
D- A136 799 A LAYERED COMMUNICATION SYSTEM FOR ETHERNET(U) NAVAL 1/2
lyPOSTGRADUATE SCHOOL MONTEREY CR M D STOTZER SEP 03

UNCLASSIFIED F/G 17/2 NLmIIIIEEEIIiEI
EEEEEEEIIEEIIE
EEEEllllEEEEEE
EEEEEEEEEEEEEE
EIEEEEIIEEIII
EEEEllEllEEEEE
EEEIIEIIEIIIIE

1.0 It

isi

NAlNL8R AU
IlkANAD-16-

11111 u Lao~

MICROCOPY RESOLUTION TEST CH-ART
NATIONAL. BUREAU Of STANDARDS- 1963-A

~.4

5%

is ' " : '. . .-. " . ." ', ."." . ." "," " ', . . . ''''''" '" -- '- -'Z"." " " * ' - -" ' - - -" " " - - " ""

* -S S .* C -

NAVAL POSTGRADUATE SCHOOL
Monterey, California

S

*0 THESIS
A LA7YERED COMMUNICATION SYSTEM FOR ETHERNET

by

'ark D. Stotzer

CD)
September 1983

LUJ

-UL- 'Thesiz Advi-For: ". R. :Kdre

Approved for puli release, dstribution r'imi-ed

V.

L4~ ~**

SgeuFmTV CLASIICATION O T"10 PAGE t~o Dos a. ________________

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
______ REM__I__DOCUMENTATION______PAGE___ BEFORE COMPLETING FORM

1. ugpuy wuuu. a* o XGESOWN 3. ECIPIENTIS CATALOG NUMBER

4. ?ITILZ fEa UMI) S. TYP9 OF R EPORT & PERIOD COVERED

A Layered Communication System Mse~ hss
for EternetSeptember 1983

77 PERFORMING ORG. REPORT NUMBER

7. AUTHOR(#) 6. CONTRACT OR GRANT NUMOER~e)

Mark D. Stotzer

9. PERFORMING 0GANIZATION NAME AND ADDRESS to. PROGRAM ELEMENT. PROJECT, TASK

Naval Postgraduate School AREA & WORK UNIT NUMBERS

Monterey, California 93943

11. CONTNftLING OFFICE NAME AND ADDRES91S 12. REPORT DATE

Naval Postgraduate School September 1983
Monterey, California 9394~3 994 UMEOPAE

. uowuT0110111 A49UCV NAME &ADDRESS(Ui &dtfrmt ftes Co.,wraidg Ollie) 1S. SECURITY CLASS. (of thisf report) p
UNCLASSIFIED

liOECLASSI FICATION/ DOWNGRADING
SCH I U LI

14L *symsVAG~UT STATEMENT (of thi Ra.eetj

Approved for public release, distribution unlimited

17. 0111TOUTI@N STATEMENT (of .~ Obeetic uwen to Bieck 20. it diftemt bee Ro~t)

to. Key 111O11111 (Coinoe a wn .so aid ... a. nooet d identify by bleck mnber)

Ethernet; Local Area Network; ISO OSI Model

2. AISTRACT (Co.mwe an roe side It ner dad Identif by bleck 601F)

-~Connecting he7.erogenous computer systems via loca! area
networks presents a challenge to software designers focr zhe
develooment of effective, reliable, and modifiable network
communication soft'-ware.

This thesis oresents a set of hierarchical -orcgran modules
written for *.se on am; I, IMBL L ZC MD crocomouter deveo=.men- .

system, running the CP/M-80 on~eratin ytm t lo h

DO I 473M EDTION Os, I NOVl is 090101.611's
S/N 0102. LP. 014- 601 SECURITY CLASSIFICATION OF T041S PAGE (When Data Rnteeec

l9MMUUY CILAMPICAt@O OF TNIS PA09 I DM- aW-.

system to become part of an Ethernet local area network.
These program modules were written to not only obey the
principles of software engineering, but to also reflect the
same functional hierarchy as the International Standards
Organization Open System Interconnection (ISO OSI)
architectural reference model for computer networks.

Ai

Acession For

TAB"U1:; Inolneed []O

Distribution/

SAx'a~ hlity Codes
S Avail and/or

,DW I Special

N * 1 A

'p '

VV

S 0102- iF- 014- 6601
2

SECUR~ITY CLASSIFICATION OF TMiS PA&E(Wft Dote gntoro

-'p ,< ' i ''''',2 ""'.g ' : """"' -,,2 -"-. . . ,' _. - -- . -'•--
• '- . .p. . " l ' ' '" " ,. " . - '-"_ -. " -" -- . ' " ' "' .. , , .. '

a *' -ff A. - -. T - .4

Approved for Public Release; Distribution Unlimited

A Layered Communication System for Ethernet

by

Mark D. Stotzer
Captain, United States Marine Corps

B.S., University of Louisville, 1977

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIECE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1983

Author:

Approved by:
Thesis Advisor

Second Reader

Chairman, Department of Electrical Engineering

Dea Science and Ingineering

3

..4

;W
%

° " .',%" " " ,,"W" , " " "" % * *""" -. ." ' ." .. ,.4.* - " " ." ' . . * -

•~~~~~~~~~ ~~~~~~~~~~~~J m i .
'

. -. .* -. -. .W ""'°''''''' ' '' '""

ABSTRACT

Connecting heterogenous computer systems via local area

networks presents a challenge to software designers for the

development of effective, reliable, and modifiable network

communication software.

This thesis presents a set of hierarchical program

modules written for use on any INTELLEC MDS microcomputer

development system, running the C./M-80 operating system, to

allow the system to become part of an Ethernet local area

network. These program modules were written to not only

obey the principles of software engineerinR, but to also

reflect the same functional hierarchy as the International

Standards Organization Open System Interconnectioa (ISO OSI)

architectural reference model for computer networks.

.

p44

.4'',;' : ,,"..¢, ,"''. -. , / ," . .. :-'o ' ':'-.','..'. . .. '-:. .: i. ".2 .- .:.

- - - * a77 - -

N

TABLE O CONTENTS

I . I4TODUCTI ON--

k. DISCLAIMER --

B. BACKGROUND ----------------- - ----------- 1.

C. PURPOSE ---------------------------------- 12

II. COMPUTER NETWORKS-----.-..-.------- 14

A. DEFINITION ------------------------------ i
S. PURPOSE -14

C. THEORY ---- --------- ---------------- 15

D. LOCAL AREA NETWORKS--------- 18

E. ETHERNET- ---------- 19

III. NETWORK IMPLEMFNTATION-....---.------------ 21

A. TOPOLOGY----------------- 21

B. HARDWARE -------------------------- 21

C. SOFTWARE - -------------------- 26

1. TEST PROGRAMS--------....-......... 26

2. COMMU4ICATION BETWEEN NETWOP. HOSTS------ 27

D. OPERATION -----.----------- 32

!. PERFORMANCE------------------------------- 33

IT. CONCLUSIONS ------------- ---------------- 36

APPENDIX A: NI301 COMMAND LISTING ------------------ 38

APPE4DIX 3: N13010 REGISTER LISTING ------ - 39

APPENDIX C: ,I3M1? STATUS REGISTER CODES- ------

5

APPENDIX D: TRANSMIT DATA 41RMAT --..... -... 41

APPENDIX ?: RECEIVE DATA O MAT. 42

APPENDIX F: SOURCE CODE OF PROGRAM ETHTESTA.ASM-------- 43

APPENDIX G: SOURCE CODE OF PROGRAM FTHTESTB.ASM ---------- 52

APPENDIX H: SOURCE COD! OF MAIN MODULE ETHERNET.PLI----- -61

APPENDIX I: SOURCE CODE FOR MODULE SENDATA.PtI-------- 69

APPENDIX J: SOURCE CODE FOR MODULE RTCDATA.PLI--------- 73

APPENDIX K: SOURCE CODE FOR MODULE ETHR2.ASM --------- 76

- APPENDIX L: TEST PROGRAM USER INSTRUCTIONS --------- 914,1

APPENDIX M: COMMUNICATICN PROGRAM USER INSTRUCTIONS ----- 92

LIST OF REFERENCES ---------------- 95

BIBLIOGRAPT ------------------------------------- 96

INITIAL DISTRIBUTION LIST --------------------- 97

.1

LIST OF TABLES

3.1 Type Field Protocol --------- ---.-..... 29

3.2 Comparison of Program Modules and ISO Model----- 31

3.3 Performance Comparison for Data Transfers
Between Single and Double Density INTELLEC Systems- 33

3.4 Performance Comparison of Transfers Between
VAI 11/780 and INTELLEC Systems- 34

3.5 Maximum Performance Data------ 35

7

LIST OF FIGURES

2.1 ISO Reference Mol----------- 17 S

3.1 N13010 Switch and Jumper Locations--- ---- 22

3.2 Ithernet krchitecture and4 N13010 Implementation-- 23

61

ACKNOWLEDGEMENTS

To my wife, Jan, goes special thanks for her unlimited

patience and for our new son, Mark Andrew.

Additionally, an expression of thanks to Mr. Mike

Williams, Computer Science Professional Staff, for his

expert advice and assistance throughout this project.

li

I.!

A. DISCLAIMER

Many terms used in this thesis are registered trademarks

of commercial products. Rather than attempt to cite each

individual occurrence of a trademark, all registered trade

marks appearing in this thesis are listed below following

the firm holding the trademark:

Digital Research Incorporated, Pacific Grove, California

CP/M-80 Operating System

CP/M-86 Operating System

PL/I-80 Programming Language

PL/I-86 Programming Language

LINK-80 Linking Utility

XLT-86 Code Conversion Utility

Intel Corporation, Santa Clara, California

INTILLEC MDS Microcomputer Development System

Multibus Bus Architecture

8080/8086 Microprocessors

8080 Assembly Language Programming Language

ISIS-Il Operating System

IAPI-432 Development System

Digital Nouipment Corporation, Maynard, Massachusetts

VAX 11/790 Minicomputer

*, ", : " : *. A ,X A -. * . , ;, ,'._
.
, - '.. ..-.- */-. ."* .,- ," .. - ,. -. ".'..A..-.-. -. -- ." .. A-..

j9 i' " 'i .. AA | .. . A*. . ' ° " " "" -.. -"' "" " "'" " "A A ." " . A " A ""

• -. - -, -. ---. -.. . . .-° - - .o . .
" '

* . ..o - 7 .

TAX/VMS Operating System

Interlan Corporation, Chelmsford, Massachusetts

N13010 Ethernet Controller Board

Xerox Corporation, Stamford, Connecticut

Ethernet Local Area Network

B. BACKGROUND

The connection of heterogeneous computer systems via

some form of network, to perform various data processing

tasks where data or resource sharing is important, is an

extremely active topic for both hardware and software

designers.

The International Standards Organization Open System

- Interconnection (ISO OSI) architectural refererce model

provides the general framework in which computer network

systems are designed to operate. This seven-layered,

hierarchical description of functions was developed to

provide a vehicle for the later development of a set of

specific network protocols. The hierarchical nature of this

model compares favorably with the techniques of hier-

archical, structured design of software that are being

taught and implemented today. The logical conclusion of the

above comparison is to use the functionally layered frame-

work provided by the ISO OSI model as a guide for deciding

how to modularize the communication software necessary to

allow host computers to be connected via a network.

4.1

-- , , , . " ,, ,,. .. , a,' ,, ', ' .', .-.- .- .,, r. ., . - - - . .- . .- - .-,,-,,-, -/ " -.- .

C. PURPOSE

The main purpose of this thesis is to construct a soft-

ware Interface to the CP/M-80 operating system so that files

and messages can be transported between various host systems

via a Local Area Network. The structuring of this software,

to reflect the layers of the ISO model, allows modifications

to the network software to be more easily made.

This thesis presents a set of PL/I-eO and Intel 8080

Assembly Language modules that, when linked together, allow

INTELLEC MDS users to communicate via an Ethernet Local Area

Network. The complete set of software developed also

includes two programs that can be used to troubleshoot or

test the Ethernet hardware. The communication program

allows INTELLEC MDS computers connected to the network to:

1. Send messages or files to other hosts.

2. Receive messages or files from other hosts.

3. Become a terminal of the VAX 11/780.

4. Command file transfers to or from the TAX.

Additionally, the communication software will provide

faster data transfers between host machines than the direct

host-to-host serial communications methods currently used.

This thesis is divided Into four chapters. Chapter II

discusses computer networks in general. The Ethernet is

presented as a specific example of a Local Area Network.

The Interlan hardware is also discussed as an implementation

of the !thernet. Chapter III deals with the details of the

12

. . . o

",- , I ,, % , s 'Iv v' . -". . .".,. .- '.. "-.. '- 4"", . "'. , ' '. ". , . , " " " -

Ethernet comiunications software. The topological, hard-

ware, software and performance issues are presented in

detail. Chapter IV presents the conclusions drawn from the

network realization and discusses possible areas of future

xrovth and performance enhancement.

13

oc
o

. 4 4 o " l " •
. ,,.,q ,,,.' ,' -. ,<, ,€,," ." -... -....,... .-',,.'.-' .',.-,,... .- .-,,-, ,..- - ".,,.-,.,- .- - . .,, .,- .. . -- - - ..

)7

II. COMPUTE _. _IBKS

A. DEFINITION

Computer networks are defined to be collections of

V interconnected, autonomous computers. A computer network

can also be a grouping in which the required processing

functions are dispersed among several of the attached

hosts. (Ref. 1: p. 2)

* ~.Computer networks are classified by their length.

Networks whose attached hosts are farther than a few kilo-

meters apart are considered Long Haul, while shorter networks

are considered Local Area. Networks are also classified by

the nature of the hosts connecte, to them. Homo~eneous

networks consist of like hosts, while heterogeneous networks

consist of dissimilar hosts.

B. PURPOSE

Ja'- The main reason that the subject of computer networking

V has rapidly achieved prominence is that networking provides

a workable solution to data processing problems where the

sharinR of data or other resources is important. Networking

can also enhance the fault tolerance of an activity's

computational assets. Loss of any host, connected to most

Local Area networks, would not affect either the other hosts

or the network itself. [Ref. 1: pp. 3-4)

14

Current trends seem to point to the merging of perso.al

computers with Local Networking to form what one author calls

community microcomputing" (Ref. 2: p. 60]. This refers to

the Interconnection, via a Local Area Network, of a set of

microcomputers that may, as a networked group, enhance the

price/performance ratio for the using activity when

compared to installing a single, large mainframe computer

(Ref. 1: p. 5].

C. THEORY

The most generally accepted model of computer network

architecture is the International Standards Organization

Open Systems Interconnection Model (ISO OSI) model. This

model is a set of hierarchical functions and protocols that

are necessary to allow computers to communicate via a net-

work. The seven layers and their definitions are listed

below: [Ref. 1: pp. 15-211

1. Physical Layer - This layer provides the actual
connection between hosts. It provides the bit
stream transmission across the network medium.

2. Data Link Layer - This layer performs error detection
and correction, address recognition and flow control.
This layer also provides data framing if necessary.

3. Network Layer - The network layer provides logical
channels between two endpoints in a network. This
layer forms the data into packets for transmission.

4. Transport Layer - The transport layer provides the
network with single, group, or broadcast addressing
modes and sets up virtual circuits between hosts.

5. Session Layer - This layer contains the functions
necessary to perform address conversion. This layer

15

initiates, binds, and terminates the dialogue between
hosts.

6. Presentation Layer - The presentation layer is mainly
concerned with converting and transforming the data
passed to a user. This layer also contains the tile
transfer and virtual protocols.

7. Applicatton Layer - The application layer, the highest
in the motel, is where the user interface to all the
network services resides. The lover layers exist only
to support this layer.

Many computer networks with layered protocols exist, but

their layers may not match the ISO model exactly because

some of the ISO functions may not be necessary. The

development of the model came about due to the need to

standardize network description. The main factors that

motivated the designers were: (Ref. 1: p. 151

1. To create a layer where abstraction was necessary.

2. To give each layer a well defined function.

3. To keep the information passed between layers to a
minimum.

4. To create only a minimum number of layers to decrease
complexity.

The above design principles are the same as the software

engineering principles of abstraction and modularity. The

hierarchical structure also compares favorably with the

structured programming techniques of software design that

are currently being advocated. (Ref. 4: pp. 58-601

The ISO OSI model Is shown in Figure 2.1. The main

concepts of the model are: (Ref. 8: pp. 28-291

1. Each layer only interacts with the vertically
adjacent layers through well defined interfaces.

16

* o.".'~ .-'~. - .*. "*. - .• --.

Changes to any layer can thus be accomplished without
changing the other layers.

2. Two basic protocols exist per layer. The first is the
vertical protocol between layers. The second is the
horizontal or peer protocol between transmitting and
receiving layers of different hosts that allows
virtual communication to occur between those hosts.

tt
-o.notut

? I

-
"

r~epi AC*ion Protoc Mebeso 1114111a

-- -------W .,,.,.o,. ..,..oo,

I

ol nt | Protocol

Sketa-.,-. -- , -- t-----.,., Netwr ,--i

In er a ,ubn1 1 1 o U 0 I

ta ine a-oa lin rou

Phsia hr~y sAl& 110 p ftyco l Py& i

mostO; NNmaqb

m batls |link-- - - yer OSt - IMP trotu€oa

L. nIVru ,L liyOr host I IMP Proto",l

Figure 2.1 ISO Reference Model

The flow of data in the network model berins at the top

layer of the sendinR host. As the data is passel lown the

sending host's layers additional information, either bits or
.,

bytes, is added to the original data ur.til the lowest layer

17

m I

Ly - '-~ -W~ W ~ W b9 J'

is reached. At the lowest layer, the data and added

information is sent on the network medium. The receiving

host then performs the reverse process on the receivel

information by passing it up the ISO layers until all

that remains, after again reaching the top layer, is the

original data.

D. LOCAL AREA NETWORKS

Computer networks, as previously mentioned, are

classified as either Long Haul or Local Area. Local Area

networks are characterized by: (Ref. 1: D. 2e6]

1. A length of no greater than a few kilometers.

2. A data rate in excess of one million bits per second
(1 Mbps).

3. Ownership by a single organization.

Two techniques of transmission medium access are being

considered for standardization by the Institute of

Electrical and Electronic Engineers (IEE). The proposed

IEEE Standard 902 endorses both the token passing and

carrier sense methods of Local Area Network medium access.

Token passing consists of not allowing any host on the local

network to transmit on the medium unless it has possession

of a token that is passed in a predetermined order from one

host to another. The carrier sense method allows each host

eoual access to the network. This scheme allows each host

to detect the occurrence of any other transmissions on the

network and allows the host to wait until the mediim is

, , ,, , ,, , , - , , - . - , . . - . , . -

U i # , , "" ' ' ' -' i ; " o . -,

clear before transmitting. If two hosts try to transmit

simultaneously, they will each detect the collision and wait

an independent, random interval before attempting another

transmission. Ethernet is an example of a carrier sense

network. (Ref. 5: p. 311

1. ETHERNET

Specific details of Ethernet Standard - Version 1.0 are:

(Ref. 6: p. 1]

1. A data rate of 10 Megabits per second (10Mbps).

2. A maximum host separation of 2.5 kilometers.

3. A transmission medium consisting of a shielded coaxial
cable.

4. A topology consisting of an unrooted tree.

5. Link control via fully distributed Deer protocol with
statistical contention resolution.

6. A message protocol of variable size frames.

Additionally, it must be noted that the Ethernet

Standard does not provide for either error correction, data

encryption, or priority access to the network medium. At

any point In time, only one transmission can occupy the

medium. [Ref. 6: p. 51

One current implementation of an Ethernet network is the

E-BUS system developed by E-Systems Incorporated. The E-BUS

implementation differs from the Ethernet Standard in that

it provides for transmitted frames to be acknowledged. The

K-BUS also provides multiple coaxial cables to increase both

19

VJ~
7 -

the effective bandwidth and the overall fault tolerance of

the network. (Ref. 10: pp. 77-781

20I

* ~* -. 7.- T -7 -.-

A. TOPOLOGY

The Ethernet Local Area Network implemented at the

Computer Science Department of the Naval Postgraduate School

consists of three connected systems:

1. The TAX 11/790 (VMS operating system) minicomputer.

2. An INTELLIC MDS system (CP/M-80 operating system),
vith attached double density disk drives, that

functions as the input/output processor for the Intel
inAP 432 32 bit microcomputer system.

3. A second INTELLEC MDS system with attached single
density disk drives. (Also CP/M-80)

This thesis presents the software necessary to allow the

above CP/M-80 based systems to communicate via the network.

The software necessary to allow the TAX 11/780 the same

communication capabilities was written by Lt. Thawip

Netniyom (Ref. 9).

S. HARDWARE

All the hardware needed to implement the above network

was provided by the Interlan Corporation. The hardware

needed to connect each INTELLEC system to the network was

installed as follows: [Ref. 7: pp. 7-131

1. The base port address switches and the priority and
interrupt jumpers were set on the U3010 Ethernet
controller board as shown in Figure 3.1.

2. The N13010 was then Inserted into the INTZLEC system
in an odd-numbered slot in the Multibus.

21

*1w

7% Q%. T , ;. -.:. W., -- . . . -

3. The NT10 transceiver was installed across the Ethernet
coaxial cable and the cabling that connects the NTil
to the N13010 was connected as shown in Figure 3.2.

The above mentioned hardware provides the ISO layer one

and two functions. The Physical Layer functions provided by

the transceivers and connecting cables are: (Ref. 7: p. 2]

1. Support of a 10 Mbps data rate.

2. Bit stream generation through Manchester encoding.

3. Media access control.

I

W'" W# VA%1*tf 10 IToI

Figure 3.1 NI301 Switch and Jumper Locations

The Data Link Layer functions provided by the N13010

board are: (Ref. 7: p. 2)

1. Data encapsulation/decapsulation (framing).

2. address recognition.

3. Transmit and receive data link management.

22

%} . .. \. , . -*. * * -

-.-I -7

The N13010 operates both as a slave to the host computer

and as a master processor when controlling the direct mnemory

access (DMA) operations between the N13010 buffers and the

host computer's memory. The transmit function is command

driven by the host, while the receive function is interrupt

driven. Control of the N13010 by the host is accomplished

by programming the host to load commands, addresses, byte

counts and Interrupt enable values into registers onboard-

the N13010. [Ref. 7: pp. 69-75)

"W

inmAn

inMSA"

inin OGni TNVKN

mm- =uKLIAMm

Fiue3. tere rcietuead 100 mlmetto

A cmleteuI lito 100cmad slctdi

~~23

Appendix 3. After issuance of any command, the host must

check for a value in the Command Status Register. The

execution of the command only occurs after this read

operation has been accomplished. The details of the read

operation are as follows: [Ref. 7: pp. 70-72]

1. The host issues a command.

2. The host checks the Interrupt Status Register to
check if the least significant bit is a one. If the
least significant bit is a one, then the host reads
the value in the Command Status Register.

3. If the value in the Command Status Register is a zero
then the command executed successfully. After the
host has issued a Load, Transmit, and Send command,
a value of one is also considered a success. Any
other value represents a failure. A listing of
Command Status Register values is located in Appendix
C.

The Command Status Register iust also be read at the

beginning of any program written to control the NI3010.

This register must be read at this time because the NI3010

automatically performs it's built-in diagnostic routines

each time the board is powered up or reset. The automatic

testing places a value in the Command Status Register that

must be read to clear the register before any other commands

can be given to the N13010.

The N13010 transmit function is accomplished in the

following manner: [Ref. 7: p. 85]

1. The host loads a block of memory in the format shown
in Appendix D for each frame to be transmitted.

2. The host loads the three N13010 address registers with
the first address of the host memory block.

24

3. The host then loads the two N13010 byte count
registers with the number of bytes in the data block.

4. The host then enables a Transmit DMA Done (TDD)
interrupt by writing a value of 6 Hex into the
Interrupt Enable Register.

5. The N13010 interrupts the host once the memory block
has been transferred Into the N13010 transmit buffer.

6. The host then enables a Receive Block Available (RBA)
interrupt by loading the Interrupt Enable Register
with a value of 4 Hex. This step allows any pending
received frames to be handled.

7. The host then commands the N13010 to send the frame
by writing a value of 29 Hex into the Command Register
and subsequently reading the Command Status Register
as previously discussed.

The N13010 receive function is accomplished as shown

below: (Ref. 7: p.901 N

1. The host enables an RBA interrupt as shown above.

2. The N13010, upon receiving a frame, interrupts the
host to notify it of frame receipt.

3. The host then writes a value of 0 Hei into the
Interrupt Enable Register to disable any other
N13010 interrupts.

4. The host writes values into the three N13010 address
registers to inform the N13010 where, in host memory,
to transfer the lata.

5. The host then loads the two 4I3010 byte count
registers.

6. The host then enables the DMA transfer of the data by
writing a value of 7 Hex into the Interrupt Enable
Register.

7. The NIM3e then interrupts the host upon completion
of the transfer. The format of received data in the
host memory Is shown in Appendix E.

The above steps are repeated for each receivel frame.

The host is then responsible for whatever further operations

25

must be done with the data. For example, the data could be

displayed on the console or written to a disk file.

The N13010 also has built-in test features and can also

support the concepts of broadcast and multicast trans-

mission. Broadcast transmission allows a host to transmit

to all other hosts simultaneously, while multicast allows

transmission to only a few selected hosts.

C. SOFTWARE

The software necessary to implement ISO layers three

through seven was originally written entirely in 8080

Assembly Language. The final version of the communication

program consists of PL/I-80 modules that perform the

functions of ISO layers six and seven and an Intel 808e

Assembly Language module that performs the functions of ISO

layers two and three. The ISO layer two functions performed

by the software supplement the functions of this layer

performed by the N13010. The primary goals of the software

were:

1. To allow users to run, if necessary, test programs

that will verify the functioning of the hardware.

2. To allow the INTELLEC systems to communicate via the
Ehternet to any other hosts connected to the network.

1. Test Programs

The basic software design process began by first

determining the major functional divisions or modules into

which a program shouli be divilded. A rimary consideration,

26

- ,' ,., ,- - ,. - - .-*. .. .

since implementation using the N13010 is interrupt

dependent, was a simple interrupt handling routine. This

routine was the basis of the first working test program,

ITHTESTA. The interrupt handling module is the basis around

which all the succeeding programs were written. ETHTSSTA,

an 8080 Assembly Language program, commands the NI310 to

perform built-in tests, one of which sends test data to

the N13010 Transmit buffer and back through the N13010

Receive Data Register. This process is called the N13010

Module Interface Loopback mode. Use of this test mode does

not permit the interrupt handling to be done in the same

manner as a normal communication program, nor does this mode

allow data to be sent onto the network. The source code

listing of ETHTESTA.ASM is located In Appenlix F.

A process of gradual enhancement was then applied to

upgrade ETHTESTA into a program that utilized the complete

interrupt capability as that of a functional communication

program. The follow-on test program, ETHTESTB, performs all

the tests of ETHTESTA and, additionally, sends a small blocK

of data to itself via the network using the NI3010 Internal

Loopback "iode. A source code listing of FTHTESTB.ASM can be

found in Appendix G.

2. on cafli2on Between Network Hosts

The test programs discussed previously involved the

utilization of only one INTELLEC system with installed

?thernet hardware. The next logical step was to again

27

. or. ... 7 .

upgrade the software to allow the INTELLEC systems to

communicate via the network.

In order to Rive hosts, especially of different

architectures and operating systems, the ability to

communicate via a network involves the development of

higher level protocols to handle any differences that may

arise due to the above factors. Specifically, lifferences

between hosts related to file storage and frame transmission

speed are the kind of issues that must be handled by the ase

of protocols. In an Ethernet network, the nature of each

frame sent onto the network must also be encoded so that

the receiving host can determine what further operations

must be performed on the received frame data.

The primary operatine system file storage mismatch

in this network implementation occurred between the VAX/VMS

and the CP/M-80 operating systems. The VAX stores text

files as variable length records by text sentence. The

VAX, also, does not explicitly store the carriage return and

line feed characters in the record. On the other hand, the

CP/M-80 operating system stores all the characters,

including the carriage return and line feed, in one long

continuous file. This file storaae incompatability was

resolved by adding format conversion routines to both the

VAX and I.ITELLEC software to convert the data prior to

transmission on the network.

. '12
4I

-S W , w" ' ' ," - ' ' ' "- -".",-"-. , . -"- . -'-. , -'-...,.;'.'

A transmission versus reception speed mismatch was

"- ' discovered in the early testing between the VAX and the

INTELLTC systems. The VAX can send data much faster than

the INTELLTC systems can receive it. The solution to this

Sproblem was to add a "stop-and-wait" [Ref. 1: pp. 143-145]

protocol to the ISO layer two functions already performed

by the N13010. This protocol was implemented in software

and assures the sending host that the last frame sent was

correctly received. This protocol also prevents a faster

sender from inundatint a slower receiver.

The frame encoding protocol adopted for our network

is as shown in Table 3.1. These codes are written into the

p., two Type Field bytes it. the transmit data block as shown in

Table 3.1 Type Field Protocol

Type Fiell,' Interpretation at Receiver
Byte 1 ' Byte 2

00H 0H Message frame

ee or Last frame of terminal reply

00 FF Acknowledge frame

or 20 File transfer-first frame

P? 01 File transfer-middle frame

OF FF File transfer-last frame

Appendix D. The receiving hosts Interpret these two bytes,

once the data block is in their memory as shown in Appendix

E, to determine what operations must. be dcne to the lata.

29

-- -, .-..

The other protocol adopted was to use fixed data

block sizes per Ethernet frame. The choices available to

the user are:

1. 12e Bytes. (Must be used for all file transfers)

2. 256 Bytes.

3. 512 Bytes.

4. 102,t Bytes.

5. 1500 Bytes. (Used in VAX terminal service mode)

A set of programs, written exclusively in 8e8'.

Assembly Language, was first developed to send short, single

sentence messages from one INTELLEC system to another usine

the above protocols. Next, the file transfer modules were

developed and tested. Throughout the entire process, close

attention was paid to maintaining software modularity that

was analogous to the functional modularity of the ISO model.

Software modules that compared directly to ISO layers were

maintained as separate modules and, whenever possible,

rewritten in ?L/I-80, a hizh level language. The final

communication program consists of three PL/1-80 modules and

one 8080 Assembly Language module. These modules were

linked together, using LINK-80, into the final product. The

final program, ?THZRNET.COM, contains calling sequences that

directly reflect the ISO OSI model structure as shown in

Table 3.2. The source code for all modules can be found in

Appendices H tbroueh K. Modules were not written for ISC

layers four and five because these layers are primarily

30

concerned with Long Haul network functions that are unneeded

by our network. Modules R!CEIVE,SEIDFPAMR!CFRAMTR-MSG an~d

AWAIT are contained in the assembly language module because

the functions they are reautred to perform are more

efficiently programmed in that language. The actual calling

seouence for the transmit process occurs as follows:

1. E9THERNET: Asks for user to select type of network
service desired and calls SENDTA.

2. SENDATA: Encodes the transmit type field for the user
selected service and calls internal routines to control
the transmission. This module calls SENDFRAM as each
frame is ready for sending.

3. SENDFRAM: This module sends each frame onto the network
then calls AWAIT to wait for the acknowledge frame to
arrive from the destination host.

Table 3.2 Comparison of ?roeram Modules and the ISO Model

ISO Transmit Receive
LAYER File Message !VAX Modes File : Message

7 ETHERNYT.PLI Same RECEIVE(ETHER2.ASM)

6 S!NDATk.PLI Same RECDATA.PLI

5 Not Implemented Same Not Implemented

4 Not Implemented Same 4ot Implemented

3 SENDFR kM(ETHE?2) Same RCFRAM(ETHER2)

2 AWAIT(ETHER2)/Hdwe Same TRMSG(ETHER2)/Hdwe

1 NT10 .ardware Same Same Same

The calling seauence for the receive process is in

the order shown below:

31

. . .-.-- -.- 4,- -- - - - - - - - -" " -_ - .

7 .

J

1. ETHERNET: The user selects the receive mode of network
service and this module calls RECEIVE.

2. RECEIVE: This module waits in a loop for the module
RECFRAM to receive a frame from the network. Once
the receive data is placed in host memory by RECFRAM,a flag is set and RECEIVE calls RECDATA.

3. RECDATA: This module decodes the type field of the
received frame and calls internal modules that
handle each different type of received data and, as
part of this process, calls TRMS1 which send the
acknowledge frame back to the source.

The four major functions that the final program

performs are:

1. Transmission of files or messages to any other network
hosts.

2. Reception of files or messages from any other hosts.

3. The ability to become a terminal of the VAX 11/79Z
via the Ethernet.

4. The ability to send specially coded messages to the
VAX to command it to either upload or download files.

D. OPERATION

The operation of test programs, ETHTESTA and ETHTESTB,

consists primarily of invoking either program using normal

CP/M-80 procedures and following the directions presented by

the program. Detailed instructions for use of the test

programs can be found in Appendix L.

Operation of the communication program, ETHERNET, also

involves invokinR the program using normal CP/,M-EO

procedures and following the menus presented by the program.

retailed operating instructions for the use of the final

communication program are located in Appendix M.

-* 32

*o, *- .

"- " •t t •. *I

E. PERFORMANCE

The communication program provides faster data transfer

between network hosts than currently employed methods.

Table 3.3 demonstrates the improved performance realized

In transferring data between single and double density

INTELLEC systems.

TABLE 3.3 Performance Comparison for "Lata Transfers
Between Single and Double Density INTELLEC Systems

!Software Used File Size Time Data Rate(bps)

! CP/M-80) (KEytes) 1 (Min:Sec)l Medium 1 Effectivel

SDXFER 136 22:45 9600 79?

ETHERNET 136 3:30 I0M 518e

The data rate of the medium is the rate at which data is

actually sent on whatever medium is being utilized. The

effective data rate is the number of bits of useful data

that was sent divided by the total elapsed time of the data

transfer. Data transfers between INTELLEC systems were not

the only ones that showed a significant improvement over

methods that were previously utilized. Transfers of data to

and from the VAX 11/780 were also accomplished siznificantly

faster as shown in Table 3.4.

The below presente4 data shows the improved performance

of lata transfers when the Ethernet network is employed.

Lastly, a series of experiments was performel to investigate

33
Vi
p".

r "f

e~,'j , ,' -2, .' ,,-:,. ,"." . •€. - " -. ..

.1.

the performance limits of data transmission and reception

of the CP/M-80 based programs. The conditions of the

Table 3.4 Performance Comparison of Transfers Between
VMX 11/780 and INTELLEC Systems

!Software Utilized !File Size I Time 1 Data Rate(bps)l

:(VPX to INTELLEC) l(Kytes) l(%in:Sec) !Medium LEffectivel

IAPX 432 Pkg 136 6:40 9600 2720

ETHERNET 136 2:05 I0M 6704
(To disk file)

ETHERNET 136 1:35 10M 11452
(To memory buffer)

------------- ------------ --------- --------------

experiments were:

1. The stop-and-wait protocol was not employed.

2. The frames would be sent as fast as possible using the
minimum amount of 8080 Assembly Laneuawe code.

3. The receiver would not perform any extra operations on
received data other than that done by the 113010. No
data was either written to any disk files or displayed
on the console.

4. TestinR was done on data block sizes of 12e and 1500

bytes per ETRENiT frame.

Testing was performed between two INTELLEC systems and

and data was collected for both the above data block sizes.

The results of the experiments are shown in Table 3.5.

As shown below, the highest data rate achieved was 1.764

Megabits per second. The time taken in each 6.8 millisecond

period was accounted for as follows:

1.2 msec Actual Data Transmission of 1500 Bytes

34

E

A 0.5 msec Instruction Execution to Restart Transmit
3.5 msec DMA Operation of 150e Bytes at 428 K~ps rate
1.6 msec Execution Time of 3I3010 Send Command

6.8 milliseconds total

Table 3.5 Maximum Performance Data

!Data 3ytes per Frame Frame Transmission Data Rate
' Interval (Effective)------------------------ -------- -------

128 2.7 Milliseconds 379 Kbps

15C 6.8 Milliseconds 1.764 Mbps
* ------ --- --------- -- ---------- ------ --

The conclusions reached about the Ethernet performance

were:

1. The transmission speed is limited by the N13010
controller itself. The NI3010 Send command reQuired
longer to execute than either the actual transmission
time of the data or the instruction execution during
each transmit cycle.

2. Although the NI3010 literature claims a DMA data rate
of 1 MBps, the board could only achieve a rate of 428

KEBps. This limitation could be due to the method in
which the NI3010 onboard microprocessor is utilized.

-4

35

.. ° y .4-..°/ '- .. * . - 4 4 , --. .. - . 4 % -- . 44'4-J..%
- "' .-*. *4

' ' .
4"o 4 - .- ,- .

IV. CONCLUSIONS

This thesis has shown that functional Local Area Network

communication software can be structured according to the

ISO OSI network model. This thesis has also shown that

the performance of the Ethernet substantially reduces the

transfer time of data between connected hosts when compared

to methods previously employed. The single to double

density transfer rate improved by a factor of 7.5 while the

VAX to INTELLEC transfer rate improved by a factor of 3.2.

The data also shows that effective data rates can be

Improved by faster host processors, but that hosts will be

limited bY the rate at which the NI300I can transfer data

to and from host memory and then send it. INTELLEC hosts

are also limited in actual network use by the rate at which

data can written to or read from disk drives.

An improvement to the effective data transmission rate

might be realized by synchronizing the speed between sending

and receiving hosts by some method other than the stop-and-

wait protocol utilized in this thesis. The transmission

rate performance degradation noted above is only aggravated

by using the stop-and-wait protocol.

The software written for this thesis can be adaDted to

run on an Intel 8e86 based system by following the steps

listed below:

36

'U U 1.- °- . .

1. The PL/I-90 source code files can be directly compiled
using the PL/I-86 compiler.

2. The 8080 Assembly Language source code can either be
hand-translated or translated by software such as the
program XLT-86 into 8086 Assembly Languaee source
code. It should be noted that there are differences
between the 8080 and 9086 processors that have to lo
with how interrupts are handled that will reauire some
rewriting of the converted code.

37

4I

a-1

4.7

w, .1 ..

APPENDIX A

N13010 COMMAND LISTING

Code(Hex) I Command Function I Feturned Code(3ex)

01 Set Module Interface 00
*--4 Loopback

02 Set Internal Loopback 00

03 Clear Loopback 00

04 Set Promiscuous Mode oe

05 Clear Promiscuous Mode 00

06 Set Receive on Error 00
Mode

e? Clear Receive on Error e0
Mode

08 Go Offline 00

09 ao Online 00

OA Run Onboard Diagnostics Diagnostic Codes as
shown in Appendix C

18 Report/Reset Statistics 010
Ve

-a 19 Report Collision Delays 00

28 Load Transmit Data 00,05

29 Load/Transmit/Send Data 00,01,03,05,06,08,OB

2A Load Group Addresses 00,05,OA

2B Delete Group Addresses 00,05,0A

3F Reset 00

Notes: Promiscuous Mode receives all network traffic.
Receive on Error receives even bad frames.

.32

APPENDIX B

N13010 REGISTER LISTI4G
p..

Register Location

Command 3ase Port Address

Status(Coimand) Base Port Address+ 01H

Transmit Data lase Port Address- 021

Receive Data Base Port Address+ 03H

Status(Interrupt) Base Port Address+ 053

Interrumt Enable Base Port Address+ ME8

Extended Bus Address Base Port Address+ 093

High Bus Address Base Port Address+ OAF.

Low Bus Address Base Port Address+ 033

High Byte Count Base Port Address+ 0CH

Low Bus Address Base Port Address+ ODH

Note: The base port address is set on the DIP switch onboard
the 413010.

39

.s

C.
i'C ,: '; : -,', ' ,':. . . . " " " ..

.,. ,,,,, ,,, . . , 4. -

• _ , - - ,, ".". .' " . , .. - , ,, . .' °. ',".'. --. ,'... .. .39'."

. I

APPINDIX C

N13010 STATUS RE,%ISTER CODES

1. Normal Mode:

Code(Eex) Command Status Result
-------------- -- --

00 Success

01 Success with Retries

02 Illegal Command

03 Inappropriate Command

04 Failure

05 Buffer Too Large

06 Frame Too Small

08 Excessive Collisions

OA Buffer Alignment Error

2. Diagnostic Mode:

Code(Rex) Returned Diagnostic Result
-------- -------- ------------------------- --------------------

00 Success

01 NM10 Microprocessor Memory
Checksum Error

02 4M1O DMA Error

03 Transmitter Error

04: Receiver Error

05 Loopback Failure

40

• "-",'",-'2,-",'"i'~~~~~~~~~~~~.. .'...."YW..-..''... .' v.. ,"....... .'. ,... -. a

S, * , :r7 . ..

APPENDIX D

TRANSMIT DATA FORMAT

7

BAR+ 0 Destination Address A. (Byte 1)
-- -- - -- - - - - - - -- -- 1

* 1 Destination Address P. (Byte 2)

- 2 Dest. Addr. C. (Byte)

+ 3 Dest. Addr. D. (Byte 4)

-- I
+ 4 Dest. Addr. E. (Byte 5)

* 5 Dest. Pddr. F. (Byte 6)

+ 6 Type Field <7:0'> (Byte 1)

- 7 Type Field <15:8> (Byte 2)
------------------------------ I

+ 8 Data-First Byte

PAR+BCR-1 Data-Last Byte

41

*° *°

I........

h-p -.
°

APPENDIX E

RECEIVE DATA FORMAT

-------7 0

BAR* 0 Frame Status

I---
+ Always 0

-- ------- ~

+ 2 Frame Length <7:0>

+ 3 Frame Length <15:8'>

+4-9 , Destination Address(6 Bytes)
-------- ---- -----------------------

+10-15 Source Address (6 Bytes)
------------- ------------------------ - ---- -

.-16 Type Field <7:0>
--- I

+17 Type Field <15:8>
- -- - - - - - - - - - - - - -----

+18 Data-First Byte

I------------ - -----------------

Data-Last Byte

CRC <24:31>

CRC <16:23>

CRC <8:15>
~...........:, AR+FRLTHq+3 CRC <0 "7*1
-------- --- ------

BAR+BC3-I I-- -------- -------------

Note: Frame length is counted from first destination address

byte up to and including the last C-C byte consecutively.

42

'. ' ," 4 " , , / ' ,' - .,. ,,'. ' ' " -,- .. ', , ,-,. . ' '', '" """""" '"" ' . ' "" -"- . ' - -" .". " ' -" ° .° . .-

...M' %F 'V IL-X klq-.I -k-

APPENDIX F

SOURCE CODE OF PROGRAM ETRTESTA.ASM

ETHERNET LEVEL ONE TEST PROGRAM--VERSION 1.13

;PROGRAM FILE NAME: ETHTESTA.COM- INVOKE COMMAND: ETETESTA

;PROGRAM FUNCTION:(RUN CN 8080 BASED MDS SYSTEM)
;COMMANDS THE N13010 BARD TO GO ONLINE,PERFORM ITS'
;DIAGNOSTIC TESTS THEN TRANSFERS A 42 3YTE DATA BLOCK FROM
;ADDRESS 0608 HEX TO ADDRESS e812 HEX VIA THE MODULE INTE2-
;FACE LOOPBACK MODE. TRANSFERRED DATA IS THEN DISLPAYED ON
;THE CONSOLE. THESE TESTS ONLY ROUIRE THE N13010 BOARD.
;THE CABLE TO THE TRANSCEIVER NEED NOT BE CONNECTED.

;TESTS PERFORMED:
1.) ONBO3AD DIAGNOSTIC SELF TEST
2.) MODULE INTERFACE LOOPBACK TEST-VERIFIES THE

FUNCTION OF THE N13010 LESS THE RECEIVE; BUFFER.

;N13010 ETHERNET BOARD CONFIGURATION:
1.) JUMPER SET TO INTERRUPT LEVEL 5
2.) BASE PORT ADDRESS SWITCHES SET TO

; 1011 (00SOH) •

3.) PARALLEL PRIORITY TO AN ODD NUMBERED
MULTIBUS SLCT.

;ORIGINAL PROGRAM: 03/10/83

;LAST REVISION: 04/30/83

;WRITER: MARK D. STCTZE?

;ADVISOR: PROF. U.R. KODRES

;MAIN PROGRAm :
CRG xvoll

;N1310 REGISTER PORT ADDRESSES:
CREG EQU 0050F;CMD REG LOCATION
SREG EQU OeB1E;CMD STATUS REG LOCATION
ISREG ECU 00?5H;INTERRUT STATUS i.EG

43

IEREG EQU OeB8H;INT!RRUPT ENABLE REG
EBAR EQU 039H;!XTENDED PPSE ADDR REG
HBAR EQU oeBAH;HIGH BASE ADDR REG
LBAR soU 00BB;ELCW 3ASE ADDR REG
HBREG EOU 00BCF;HIGH BYTE COUNT REG
LBREG EQU 00?DE;LOW BYTE COUNT REG

;OTHER NEEDED ADDRESSES:
BDOS EOU 0eO5H;BDOS ENTRY POINT
CEREG EOU 07?OH;COPT 07 INTERRUPT ENABLE REG
LASTM EQU 09%00!;ADDP O INIT STACK PTR

;NEEDED BDOS COMMANDS:
CONSIN EQU 01H;CO4SOLE CHAR INPUT
CONSOUT EQU 02H;CONSOLT CHA OUTPUT
PSTRING EQU 09H;?RINT TEXT STRING

;CLEAR COMMAND STATUS REGISTER BY READING
IN SREG

;LOAD JUMP INSTRUCTION FOR INTERRUPT HANDLER: (INT 5)
MVI AOC3H;JMP INST CODE
STA 0028! ;LOAD IT IN ADDR 0028 REX
LXI H,INTHDL
S.LD 0029H

;OUTPUT INITIAL MESSAGE:
LXI D,BMSG
MVI C.?STRING
CALL BDOS
CALL CRLF

;SET UP INTERRUPT CONTROL:
MVI A.012H
OUT OFDH
MVI A,ODFH; ENABLE INTERRUPT 5-ETH!RNET BOARD
OUT o0CH

;LOAD TRANSMIT DATA BLOCK-FIRST 3 BYTES ASSIGNED BY XEROX:
mVI A.02H
STA 0-00
MVI A,07H
STA 0601HMVI A,51H

STA 0602!
;LOAD INTERLAN ASSIGNED LST 3 BYTES HERE:
DESTINP CALL CRLF

LXI DDMS'O
MVI C.,PSTPING
CALL BDOS
CALL CPLFLXI D ,DMSG1

mVI C,PSTRING
CALL BDOS
CALL CRLF
LXI DDMSG2
mvr C,PSTRrt4G
CALL ?DOS

NCALL C'LF
*MVI C,CONSIN;.READY FOR CHOICE

CALL 3DCS

CIz DADDR2
CPI 32H
JZ DADDR1

2CALL CRLF
LXI D,DMSG3
mv! C,PSTING
CALL BDOS
CALL CRLF
Jmp DESTIM~P

DADDRI CALL CRL? ;IF ADDR 00-03-EA SELECTED LOAD IT:
MVI 90
STA e6913H
MVI A.03!
STk 0604H

}v MV!EA
STA 0605H
imp ADDI1N.

DADDR2 CALL CRLF ;IF ADDR 00-04-OA SELECTED LOAD IT:

STA 001

STA 06e4H
MVI A,0AH
STA 06L75H

;LOAD TYPE FIELD- 2 BYTES:
ADDIN MV! A,OOH

STA 06e6H.

STA 0607?H
;NOTE:FO. THIS TEST THE kCTUAL DATA IS IN ADDRESSES
;MeS-0632HEX FOR TRANSMISSION

;READ IN THE TEST DPTA:
Mv! C,PST?.INr
LXI D,FMSG
CALL BDOS
CALL C R1F
CALL CONI4
CALL C RL.jF

;GO04OLIME UPON POWER UP:
LXI SP.LASTM

45

MVI A,09R;CMD TO GO ONLINE
OUT CREG
LXI DOLMSG
MVI C,PSTRING
CALL BDOS
CALL CRLF
CALL READ

;RUN ONBARD DIAGNOSTICS TEST:
MVI A,0AH; CODE FOR SELF TEST COMMAND

- OUT CREG
LXI D,STMSG
.'v- MC,PSTRING
CALL BDOS
CALL CRLF

-N.OLCALL RE4D
;RUN MODULE INTERFACE LOOBACK TEST:

MVI A,09F; GO BACK ONLINE
OUT CREG
LXI D,OL MSG
MVI C,PSTPING
CALL BrOS
CALL CRLF
CALL READ

;LOAD INTERRUPT ENABLE REGISTER=4. SET TO RECEIVE DATA.
DI
LXI H,CEREG
MVI A,04H: } MOV M,A
OUT IEREG

El
;RUN COMPLETE MODULE LOOP TEST:

MVI A,01E; ENTER MODULE LOOP TEST MODE
.0' OUT CPEG

LXI D,MLMSG
MVI C,PSTRING
CALL BDOS
CALL C-L T

II. CALL PTA!
CALL TPMSG;TRANSMIT TEST DATA BLOCK
LXI D*,TRCMSG
MVI C,PSTI .IG
CALL BDOS
CALL CRLF
CALL READ

;*********,,****** TEST ONLY-MODULE LOOPBACK *
; THIS PATCH ENABLES DAT' TRANSFER TO HOST MEMORY IN TEST

DI
MVI A ,7
LXI H.CEREG
MOV M,A

Ie

.. ' " o , ° , , " ., - , - . . . ' % " ' % . ' % - " " % ' . " - " ' . ' " , w ' . . . " ' . ' . - ' ' .-" " . " " , " - .. , # . " ,, , " , , : , % ' 5 % " ' ' - . , . ' V .'4 6. " . ' '

OUT IEREG
EI

MVI A,03H;CLEAR LOOP TEST MODE
OUT CREG
LXI D,CLMSG,
MVI C,PSTRING
CALL BDOS
CALL CRLF
CALL READ

;GO BACK ON-LINE
MVI A ,097"

OUT CREG
LXI D,OLMSG
MVI C,PSTRING
CALL BDOS
CALL CRLF
CALL R YAD1

;DISPLAY DATA TRANSFERRED VIA ETHERNET BOARD TO CRT:
MVI C,PSTRING
LXI D,LMSG
CALL BDOS
CALL CRLF
CALL CONOUT
JMP 0 ;RETURN TO OPERATING SYSTEM

; END OF MAIN PROGRAM

TRANSMIT SUBROUTINE:
TRMSG DI
;LOOP UNTIL INTERRUPT ENA'.LE REGISTER =0 OR 4:
LOOP LXI H,CYREG ; CHECK IF N13010 BUSY

MOV A,M
CPI OORJZ CONT

CPI 04F
JZ CONT
EI
JMP LOOP

CONT DI ;DISABLE INTS. AND CHECK AGAIN
LXI H,CEREG
MOV A.M
CPI OH
JZ CONTI
CPI 04H
JZ CONT1
EI
4i P LOOP

CONTI MVI A,00F
LXI H,CEPG; DISABLE THE N13010 INTERRUPTS
MOVr M,A

47

..."..5. ' ., ' .. ' J ,' ., -, ." , " , ".". . " ,-',,'- , -"-"-'-"-'-"-"'.,-", . ," .,.- . - .". - - .- ,•. - . . .
-£4= " - r " " " I I, . " _ !:L " ',_ - . '. - f , , " . " . ' " . " . " .

OUT IEREG; SET INTERRUPT ENABLE REG 0
El

ADDEI. ECU OOR; LOCATION OF TRANSMIT DATA START=
ADDR2 EOU 06H; 600 H2X
ADDP3 EQU 00Hf

.VMYi AADDR1; LOAD TRA~NSMIT MESSAGE 1ST ADD?
OUT EBAR
MVI A.ADDR2
OUT HEAR
MVI A,ADrR3
OUT LEAR
MVI A.eOH;LOAD BYTE COUNT
OUT 3G
mYi A.032H
OUT L3EREG
DI
MYI A,06ff; MNBLE s13010 ?DD 14TERRUP,
LXI HIC E R EG
mov M,A
OUT IEREG
El

DONE MOY A,M; READ THE COPY OF IERPG-CEREG
CPI 06H
JZ DOME

TEST3 mvi A,029E; LOAD TRANSMIT A.ND SEND COMMAND
OUT CREG
R ET

;END TRANSMIT SUBRCUTIN?

;READ STATUS SUBROUTINE:
READ PMvI P.11111110B

MUi C.007!
RDLP I N ISREG

VOPA B
CPI OOFF
JNZ PDL?;CONTINUE LOOP UNTIL STATUS REG RA2
IN ST
CMP C
JNZ EFMSC.
LXI D,MSG

10V I C.2'91
CALL 3EDOS
CALL CP.LF
imp RDONE

EPMSG LXI DNMSG

RDONE RET
;END READ SUBROUTINE:

48

;INT2ERRUPT HANDLER:
;SAVE CPU STMT:
INTHDL 'El

PUSH PSV
APUSH B

PUSH D
PUSH H
DI
LXI FCMRG
MOT 3,M; SAVE ENABLE REGISTER COPY VALUE
MVI A,00H
LXI HCTREG; DISABLE N13010 INTS.
OUT I ER EG
MOTY.
MOV A.3
Mvi 3 ,04H; IS RBA INTYRRU?T FNABLED?
CMP B
JZ RB3A
Mv! 3,0?R; IS RDD INT2RRUPT TNABLED?
CMP P
JZ R DD
Mv! A.w4; IF NEITHYR OF ABOVE THEN WAS TDD
LXI HCEREG; ENABLE RBA IMTERRUPT

V.MOY M,A
OUT FF
imp FIN!

PADD1 ECU 00R; 1ST ADDE TO WRITE RECYD FRAME TO=
FADD2 ECU eel 0800 REX
RAkDD3 EQU00
RBA mv! A,RADD1; LOAD THE ADDRESS REGISTERS

OUT EBAP
mv! A,RADD2
OUT M
MY! A.RADD3
OUT LBA:?

V.MY! A,00H; NOV LOAD BYTE COUNT REGISTERS
OUT H3 R FG

VMv! A,040H
O UT LBREG
LXI HCEP.EG
MY! A.077; ENABLE RDD INTERRUPT
MOY M.A
CUT IEREG
imp FIN!

R r LXI Hc'?
mv! A,047

;R-CEIVE PRCCESS WIKE U? IN HRE
MOY M.A
OUTIR

FIN! El
;RESTORE CPU STATE:

b4

POP E
POP D
POP B
DI
-M¥I A,020; RESTORE INTERRUPT STATUS

OUT OFD.-
POP PSW
El
RET

;END INTERRUPT EANrlsE

CRLF MVI C,CONSOUT; GENERATES CARRIAGE RTN +LI4E
MVI E, DH
CALL PDOS
MvI C,CONSOUT
MVI E,OAH
CALL BDOS
RET

CONIN LII H.698H; READ TEST DATA INPUT FROM CONSO
INLP MVI C.CONSIN

PUSH B
CALL BDOS
POP H

CPI 60E;COMPARE TO GRAVE ACCENT
RZ
INX H
JMP INLP

CONOUT LXI H,08127; OUTPUT TEST DATA TO THE CONSOLE

OTLP MVI CCONSOUT
MOV E.M
MOv A,!
CPI 6@;I! GPAVE ACCENT TMEN RETURN
RZ
PUSH H
CALL BDOS
POP H
INI E
JMP OTL?

BMSG DB 'ETHENET LEVEL ONE TEST PROGRAM: VERS'
D8 'ION: 1.13: 04/30/83-MDS$'

OLMSG DP 'ONLINE COMM.ND ISSUEDS'
STMSG DB 'SELF TYST COMMAND ISSUED$'
MLMSG DB 'OrULE LCOPBACK COMMAND ISSUED$'
CLMSG DB 'CLEAR LOOP3.CK COMMAND ISSUEDS'
TRCMSG D3 'TRANSMIT/SEND COMMAND ISSUEDS'
MSG DB "JOMMAND EXECUTED$'
NMSG DB "COMMAND FAILED$'

50

iI, " ' , , , t - ' ," " , ,, " . -" ." . - ".",. . ." ,". " . ", ' . -. - - . - .- - - . , ' - '.

FmSG DB 'ENTEY TEXT(42 CHAR MAX) FOR MODULE'
13 "1'TERFACE LCOPACK(42 CHAR MAX)
DB I (END WITH A GRAVE ACCENT=> ")S"

LWSG DB 'THE DATA TRANSFERRED VIA MODULE INTER'
DB 'FAC7 LOOPBACK IS:$W

DMSGO DB 'ENTR ADDRESS OF INSTALLED NI3010'
DB " 3'A@r$"

DMSGl DB '"OARD 00-Q04-OA.FNTER 1 "1 "
DMSG2 DB 'BCARD 00-e3-EA:ENTER " 2 "
DMSG3 DE 'INCORRECT SELECTION-TRY AGAIN:S"

END;ETEERNET LEVEL ONE TEST PROGRAM,-VERSION 1.13

.5

.51

APPENDIX G

SOUCE CODE OF PROGPAM ETHTEST3.ASM

; ETHERNET SECOND LEVEL TEST PROGRAM--VERSION 2.04

;PROGRAM FILE NAME: ETHTESTB.COM- INVOKE COMMAND: ETHTESTB

;PROGPAM TUNCTION:(RUN ON SOSO BASED MDS SYSTEM)
;SELF TEST.IT THEN TRANSFTRS A 4:2-BYTE BLOCK OF TEXT FROM A
;BLOCK OF MEMORY STARTING AT ADDRESS 0700 HEX TO ANOTHER
;BLOCK AT 0900 HEX IN TWO SEPARATE TESTS VIA THE NITeI
;BOARD. SUCCESS.UL COMPLETION OF THESE TESTS VERIFIES THE
;FUNCTIONING OF ALL THE H.RDWPRE NECESSARY TO COMMUNICATE
;WITH OTHER HOSTS ON THE NETWORK.

;TESTS PERFORMED:
1.) BOARD DIAGNOSTIC SELF TEST
2.) MODULE INTERFACE LOOPBACK-VERIFIES THE

p* FUNCTIOING O! THE N13010 BOARD INCLUDING THE
NM1O PROTOCOL MODULE.

3.) EXTERNAL LOOPBACK-VERIFIES THE FUNCTIONING OF
ABOVE A.ND THE FLAT CABL!,TRANSCEIVER AND
NETWO R COAXIAL CABLW.

;N13010 ETHERNET BOARD CONFIGURATION:
1.) JUMPER SET TO INTERRUPT LEVEL 5.
2.) BASE PORT *DDRESS SWITCHES SET TO

; 1 e11 (eBOH) .

3.) PARALLEL PRIORITY TO AN ODD NUMBERED; ULTTBUS SLOT.

;ORIGINAL PROGRAM: 03/31/S3

;LAST REVISION: Z4/30/83

;WRITER: MARK D. STOTZER

;ADVISOR: PROF. U.R. KOrRES

;MAIN PROGRAM:
ORG I %H

; NI3eiO REGISTER PORT IDDPESSTS:

52

I.."'"'" " "" " "'" .:"" J -.."-'"".W ""." .J""".','.;,,,,"",.~..:'''..< ..

CREG EOU 00S07;CMD REG LOCATION
SREG EQU 00?1;CMD STATUS REG LOCATION
ISREG EOU 0GB5H;INTERRUPT STATUS REQ
IEPEG EOU 00B8R;INTRRUPT ENABLE REG
EBAR EOU 002'H;FXTENDYD BASE ADDR REG
HBAR ECU OOBAF;RIGR BASE ADDR REG
LBPR EOU OeBF;LOW B3S! ADDR REGHSREG EQU 00SCF;HIGH BYTE COUNT REG
LBREG EQU e3DH;LOW BYTE COUNT REG

;OTHER NEEDED ADDRESSES:
EDOS EOU 005H;BDOS ENTRY POINT
CEFEG EQU 0e00H;COPT OF INTERRUPT ENABLE REG
STATUS EOU 0801H;COPY OF CMD STATUS REG

;NEEDED EDOS COMMANDS:
PSTRING EQU 09H5; PRINT STRING FUNCTION
CONSIN EQU 01H; CONSOLE CHA? INPUT FUNCTION
CONSOUT EoU 02H; CONSOLE CHAR OUTPUT FUNCTION

;READ CMD STATUS REG ON POWER UP:REOUIRED FOR INITIALIZATION
IN SREG

;OUTPUT INITIAL MESSAGE TO USER:
LXI D,PrSG
MvI C,PSTRING
CALL BDOS
CALL CRLF

;LOAD JUMP INSTRUCTION FOR INTERRUPT HANDLER: (INT 5)
MYi A,OC3H;JM? INST CODE
STA 002PF ;LOAD IT IN ADDR 0028 HEX
LXI H,INTHDL
SHLD 0029H

;SET UP INTERRUPT CONTROL: (INT 5)
MVI A.012HvOUT 0FDH

mYI AoDFH: ENABLE INTERRUPT 5-ETHERNET BOARD
OUT OFCH

;LOAD TRANSMIT DATA BLOCT-FIRST 3 IYTES ASSIGNED BY XEROX:
MvI 122H
STA 0700H
MVI A,07H
STA 0701H
mVI A,01Y
STA 0702H

;LOAD INTERLAN ASSIGNED LAST 3 PTTTS HERE:
DESTINP CALL CLF

LXI D.DMSGO; ASK USER TO INPUT THIS ADDRESS
MVI C.PSTPING

53

CALL Brlos
CALL CLF?
LXI D~flMSC.1

-*MVI C.PSTFINJG
CALL 3DOS
CALL CRL?

*LXI DDMS(;2
MVI C,PSTRING
CA LL BDOS
CALL CRPLF
MvI C,CONSIN;READ USER INPUT 0F ADDlRESS
CALL BDOS
CPI 31F
JZ flAIt~2
CPI 32H
JZ DADDR1
CALL CFLF
LXI D,rmSG3
MVI C.PSTRING
CALL BDOS
CALL CMY
imp DESTIN'?

DADDR1 CALL CRLF; ADDPR 00-03-EA SELECTED BY USER:LOAD
MVI A,0OF
STA 07 03
MVI A,73H
STA 74

STA 075
JM? A DIN -

DADDR2 CALL C?W ADRESS vo-e4-e'A SELECTED:LOAD IT

STA. 07037
MYI A.04F
STA 001
MVI A.0A

*STA 0705F
;LOAD TYPE MIELD- 2 BMYS:
ADDIN MVI .0

-ASTA 0.606a

STA 67
;NOTE:FOR THIS TEST TVE ACTUAL DATA IS 14~ ADlDRESSES
;0608-0632HEX FOR TRANSMISSION

V ;READ IN4 THE TEST DATA ?OR MODUL2 INTYRFACE1 LOOPBACK T"EST:
mvi C,PSTRING
LXI D,FMSG
CALL BDOS
CALL CDFL?
CALL CON14~

4.4

CALL CRLF
;GO ONLINE UPON POWEP UP:-- . El

MVI Ag9FCMD TO GO ONLINE
OUT CRES
CALL READ

;RUN ONBOARD DIAGNOSTICS TEST:
MVI AAH; CODE FOR SELF TEST COMMAND
OUT CREG
CALL READ

;PUN MODULE INTEPFACE LOOPSACK TEST:
MvI A,09H: GO BPCK ONLINE
OUT CREG

LODCALL RFAD
;LOAD INTERRUPT ENABLE RTGISTER=4. SET TO RECEIVE DATA.

DI
LXI Iq IC sPEGMY I A, 04H

No MIAMOV M,A

OUT IEFEG
El

* - ;COMMAND MODULE INTERFACE LOOPBACK MODE:
-" ~~MV I A 2

OUT CPEG
CALL READ

;TRANSFER THE TEST DATA:
CALL TPMSr,
CALL READ

;DISPLAY DATA TRANSFERRED PT MODULE INTYRFACE LOOPBACK TEST:
MVI C,PSTRING
LXI D,LMSG
CALL 3DOS
CALL CFLV

CALL CCNOUT; TEXT OUTPUT TO THE CONSOLE
CALL CL?

;PERFORM INTERNAL LOOP.ACK TEST:
M;RAD IN TEST DATA FOR EXTERNAL LOOPRBACK TEST:

MVI C.)STRI4G
LXI D FEMSG
CALL BDOS
CALL CRLF
CALL CONIN

;,ITCALL CRLF
;EXIT INTERNAL LOOP TEST MODT:

MVI A,03?
OUT C rG
CALL R EA D

;GO BACK ONLINE:

5,J 5
1V

m J 55" ~,~:~-A:. 4

." ::.

MV I A.09H
OUT CREG
CALL R ?AD

;TRANSMIT THE TEST DATA:
CALL TRMSG
CALL READ

;DISPLAY DATA TRANSFERRED VIA INTERNAL LOOPBACK TO CRT:
MVI CPSTRING
LXI D,LEMSG
CALL BDOS
CALL CP.LF
CALL CONOUT
CALL CRLF
JMP 0 ;RETURN TO OPEPATING SYSTEM

; END OF MAIN PROGRAM

TRANSMIT SUBRCUTINE:
TRMSG Dr
;LOOP UNTIL INTERRUPT EMABLE REGISTER =0 CR 4:
LOOP LXI H , C RTG

MOV A ,!
,. CPI 00H

JZ CONT
CPI 04H
JZ CONT
El
JmP LOOP

CONT DI
LXI H CERTG
MOV A M
CPI L
JZ CONTI
CPI 04H
JZ CONT1
El
mJP LOOP

CONT1 MVI .e
LXI H.CEREG
MOY M,A
OUT IEREG; SET INTERRUPT ENABLE REG 0
El

ADDR1 ECU OOH; LOCATION OF TRANSMIT BUFFER TOP
ADDR2 EQU 07H
ADDR3 EOU @@t

MVI A,ADDR1; LOAD TRANSMIT MESSAGE 1ST ADDR.HC OUT E3 A
MVI A,ADDR2
OUT HBAR
4VI A .r-rt3U OUT LB -R

6.
:6,'; 5o

00, 0

(MVI A,GeffLOAD BT COUNT
OUT R.BREG
MVI A,032Hq
OUT LBREG
DI
mvi A:06H; ENABLE TDfl INTERRUPT

OUT MEG
El

DONE LXI H ,C ERVG
MOV A.M; RYAD THE COPY OF I!REQ=CERFG
CPI1 06 H
JZ DONE

TEST3 MVI A,029q; LOAD TRANSMIT AND SEND CCMMANr
OUT CREG
RET

;END TRANSMIT SUBROUTIN?

;READ STATUS SUBROUTIJ?:

MVI C I00F
RDLP IN ISREG

ORA B
CPI e1 ?H
JNiZ RDLP;CONTINUE LOOP UNTIL STAT REG READY
I Iq FE
LXI v-,STATUS; KEp COPY OF CMD STAT REG

9-MOY M,A
CM?
JNZ '!PMSC
LXI D,MSG
MYI C,?STRING
CALL 'BDOS

*CALL CRLFP
imp R:)ONF

ERMSG LXI D.NMSG
MVI C.PSTP.ING
CALL BDOS
MVI B,09!
LXI H,STATUS

Mov A.M
ADD B
MVI C,CONSOUT;!RROR CODE TO CONSOLE
MOV !.
CALL B DCS

-:CALL CRLIF
LXI D.NMSG1
MVI C, ?STRINrC

CALL VR L F

V. 5?

RDONE RET
;END READ SUBROUTINE:

;INTERRUPT HANDLER:
;SAVE CPU STATE:
INTHDL EI

PUSH PSW
PUSH B
PUSH D
PUSH H
r.I
LXI HCEREG
MOV 3,!A; SAV - ENABLE REGISTER COPY VALUE
MVI A,0@; DISABLE NI3010 INTERRUPTS
LXI HCE-.EG
MOy M,A
OUT IEREG
MOV A.?
MVI ?,e4H; WAS RBA INTERRUPT ENABLED?
CMP 3
JZ RBA
MvI B,07H; WAS RDD INTERRUPT ENABLED?
CMP B
JZ RDD
mVI A,04H; IF NEITHER OF THE ABOVE THEN
LXI H,CEREG; WAS TDD- NCV ENABLE RBA AGAIN
MOY M,A
OUT IEREF
JMP FINI

RADMI EOU OOH; LOCATION OF 4HERE TO WRITE RECVD
RADD2 EOU 09H; FPAME DATA IN HOST MEMORY
RADD3 EOU OOE
RBA MVI A,RADDl; NOW LOAD ArDR INTO ADDR REGS.

OUT EBAR
MVI A.RADD2
OUT HEBAR
MVI A,RADD3
OUT LBA!
MVI AM;H: LOAD BYTT COUNT REGISTERS
OUT HBRFG
M VI A,040H
OUT LPRYG
LXI HCEREG
MVI A,Y7H; ENABLE RDD INTERRUPT
MOv M.A
OUT IERG
JMP EINI

RDD LXI HCFF.EG
MVI A, 34H

;RECEIVE PROCESS W'dKE UP IN HERE
MOV A

58

OUT TEREG
FINI EI
;RESTORE CPU STATE:

POP H
POP D
POP
DI
MVI A,Z2H; RESTORE INTERRUPT STATUS
OUT OFDH
POP PSW
EI
RET

;END INTERRUPT HANDLER

CRLF MVI C,CONSOUT; GENERATES CARRIAGE RT4 +LFEED
MVI F,orH
CALL BDOS
MVI CCONSCUT
MVI ?,OAR
CALL 3DOS
RET

CONIN LXI E,0?08H; READ TEST DATA INPUT FROM CONS.
INLP MVI C,CONSIN

PUSH F
CALL BDOS
POP H
-O V MA
CPI 60H;IF GRAVE ACCENT THEN RETURN

.4- RZ
7.; INX H

JMP INLP

CONOUT LXI H,09123; OUTPUT TEST rATA TO THE CONSCLE
OTLP MVI CCONSOUT

..< MO V TIM
rmov AMSMOV A ,!
CPI 6OF;TTST FOR END CHAR-GRAVE ACCENT
PZ
PUSH H
CALL BDOS
POP I
INX H
im1p OTLP

BtMSG DB 'ETHERNET SECOND LEVEL TEST PROGRAM:'
DB VEPSIOJ 2.24: 24/30/83-MDS-

DMSG0 DB 'ENTFR AnDRESS OF INSTALLED NI3010
DB "30PD: s"

DMSG1 DS '!?CARD -(4- .:" T! '1"
DMSG2 DB 'OAD -V'3-EA:ENTER 2 "t'

:..: 59

DMSG3 DB 'INCOPRECT SELECTION NUMBER-TRY AGAIN:$'
MSG DB 'EXFCUTING BOARD COMMAND$"
NMSG DB 'COMMA.ND FAILED-ERROR CODE:$'
NMSG! DB 'FOR INTERPRETATION OF ERROR CODES-SEE'

DB 'ASM LISTING FILE$'
FMSG D3 'ENTER TEXT(&2 CHAR MAX) FOR MODULE'

DB ' INT-RFACE LOOPBACK TEST:
D3
D3 '(END STRING WITH A GRAVE ACCENT=> ")$"

FEMSG DP 'ENTER TEXT(42 CHAR MAX) FOR INTERNAL'
DB ' LOOPBACK TEST:
DB
DE '(END STRING WITH A GRAVE ACCENT=> ")$"

LMSG DB 'THE DATA TRANSFERRED BY MODULE'
D3 ' INTERFACE LOOPBACK IS:$'

LEMSG DB 'THE DATA TRANSFERRED BY INTERNAL'
I , Di ' LOOPBACK IS:$'

. ;ERROR CODES:(IN RESPONSE TO TRANSMISSION COMMAND FAILURES):

LETTER NATURE OF FAILURE

S YOU ISSUED AN INAPPROPRIATE COM
MODE THE BOARD IS IN.

* T BOARD TIMER TIMED OUT-POSSIBLE
PROBLEM.

TJ TRANSMIT BUFFER SIZE EXCEEDED:(

FRAME SENT TO BOARD TOO SMALL:(

X EXCESSIVE COLLISIONS

END;ETHTRNST SECOND LEVEL TEST PROGRAM-VERSIO4 2.

*1*7

APPENDIX H

SOURCE CODE OF MAIN MODULE ETHERNET.PLI

ETBERNET:/*MAIN MODULE-APPLICATION LAYER-ISO LEVEL 7*/

PROCEDURE OPTIONS (MAIN);

DECLARE
/* LOCAL VARIABLES *
COUNT? FIXED ?INARY(7),/*LOOP CONTROL VARIABLE*/
COUN;7A ;II BINARY (7),/*LOOP CONTROL*//j
COUNT73 IXD BINARY (7/*LOOP CCNTROL*/
COUNTC FIXED BINARY(?),/*LCOP CONTROL*
DSKNO CHARACTER(1),/*USER INPUT DISK NUMBER*/
FRAMD C9ARACTvR(1),/*USER INPUT FRAME SIZE*/
SELECT CHARACTER(l),/*USER INPUT MODE SELECTION*/
/* GLOBAL vARIA3LES *
RIOFIL FIXED DINART(7) EXTERNAL,/*RECVD FILE NO.*/

*4 RSIZE FIXED BINART(15) EXTERNAL,/*FRAME SIZE*/
V'TERM FIXED BIf4ARY(7 EXTERNAL,/*TERMINAL FLAG*/
TRMODE FIXED BINARY(7 EXTERNAL./*CMD MODE FLAG*/
/* GLOBAL DATA STRUCTURES */
TXBUYF(1508) FIXED BINARY(7) EXTERNAL,/*TRANS BUFF*/
MXUTY(1522) FIXED 314ARY(7) EXTERNAL,/*RECV BUT*/
TXTBUF (128) FIXED BINARY(7) EXTEBNAL,/*TEXT BUFF*/
1 RX7C3 EXTEP.NAL,/*RnECEIV!. FILE CONTROL BLOCK*/
2 DISK FIXED BPINART(7)
2 FNAMP CEARACTER(8).

4 2 TTP? CRARACTER(3),
2 RFCB(21) FIXED BINARY(7),

1 TXPCD EXTERNAL,/*TRANSMIT FILE CONTROL BLOCK*/
2 DISK FIXED PINARY(7),
2 FNAM! CHAPJ.CTER(8).
2 FTYP7, CHARACTER(3),
2 TFCB(24) FIXED BINARY 7),

/* EXTERNAL MODULES *
INIT ENTRY,/* INITIALIZES INTERRUPTS & N13010*/
SENDATA ENTRY,/* TRANSMIT ISO LEVEL 6 MODULE *
R!CEIVE ENTRY;/* RECEIVE MODULE *

/*LAST REVISION: 09/15/e3-ogee ORIGI3AL PROGRAM:0?/29/83 *
/*AUTROR: CAPT. MARK D. STOTZER-USMC-AEQIS GROUP
/*TRESIS ADVISCR: PROFESSOR UNO R. KODRES-COMP. SCIENCE *

PUT SKIP LS * * * * * * * *)
PUT SKIP LIST(ETEERNET COMMUNICATION PROGRAM-V!RSION 5.0');

61

PPUUTij

"777777-- .- to

.44

PUT SKIP LIST ('ALLOWS THIS HOST TO CCNNECT TO THE NET.');
PUT SKIP LIST ('CNTL-H=BACKSPACE FOR TEXT ENTRIES:');
PUT SKIP LS
PUT SKIP(2);
RECFIL=4;?
COUNT7=1 ;
DO WHILE (COUNT?=1);

COUINTA=1;
DO vHILE(COUNT7A=1);

PUT SKIP(2);
PUT SKIP LIST("******* MAIN MENU **** ');
PUT SKIP LIST('WRITE RECEIVED FILES TO DISK NO:');
PUT SKIP LIST('DEAULT DRIVE(A) = 1');
PUT SKIP LIST('DISK DRIVE A = 2');
PUT SKIP LIST('DISK DRIVE 3 = 3');
PUT SKIP LIST ("
PUT SKIP LIST('ENTER DRIVE NUMBER==>');
GET LIST(DSKNO);
PUT SKIP(2);
IF DSKNO='I" THEN

DO;
RXFCB.DISK=0;/* LOAD DISK NUMBER IN FCB */
COUNTA=2;

END;
ELSE
IF DSKNO='2' THEN

DO;
RXFCB.DISK=1;/* DISK NUMBER TO FCB */
COUNT7A=2;

END;
ELSE
IF DSKNO='3' THEN

DO;
RXFCB.DISK=2;/* DISK NUMBER TO FCB */
COUNT7A=2;

END;
ELSE

PUT SKIP LIST('INVALID DRIVE NUMBER-REENTER:');
END;/*DO LOOP*/
COT7 =1;
DO WHILE (COUNTB=1);

PUT SKIP LIST('ETEERNET FRAME DATA BLOCK SIZE:');
PUT SKIP LIST('SELECT 128 FOR ALL FILE OPERATIONS');
PUT SKIP LIST('AND TAX COMMUNICATIONS.');
PUT SKIP LIST(' 128 BYTES = 1');
PUT SKIP LIST(' 256 BYTES = 2');
PUT SKIP LIST(' 512 BYTES = 3");
PUT SKIP LIST(' 1024 BYTES = 4');
PUT SKIP LIST(' 1500 BYTES = 5');
PUT SKIP LIST
PUT SKIP LIST('ENTER SELECTION==>');

62

.%"

GET LIST(FRAMD);
PUT SKIP(2);
IF FRAMD='1' THEN

DO;
PRSIZE=128;/* SET THE FRAME SIZE *1
COUNT7B=2;

END;
ELSE
IF FRAMD'2' THEN

DO;
FRSIZE=256;/* SET FRAME SIZE /
COUNT7B=2;

END;
ELSE
IF FRAD='3' THEN

DO;
FRSIZE=512;/* SET FRAME SIZE *1
COUNT7B=2;

END;
ELSE
IF FRAMD-'4' THEN

DO;
FRSIZE=1024;/* SET THE FRAME SIZE *1
COUNT 3-2;

END;
ELSE
IF FRAMD-'5' THEN

DO;
FRSIZE=150e;/* SET FRAME SIZE */
COUNTB-2;

END;
ELSE

PUT SKIP LIST('INCORRECT CHOICE-REENTER:');
END;/* DO LOCP */
VTERM=O;/* RESET TERMINAL FLAG TO FALSE */
TPMODE=O;/* RESET COMMAND MOD! FLAG TO FALSE *1
CALL INIT;
PUT SKIP LIST ('OPERATING MODES:');
PUT SKIP LIST('***************"******"*);
PUT SKIP LIST('RECEIVE WAIT LOOP = I');
PUT SKIP LIST('TRANSMIT FILE OR MESSAGE= 2');
PUT SKIP LIST('VIRTUO.L TERMINAL OF VAX = 3');
PUT SKIP LIST('VAX CCMMAND MODE = 4:');
PUT SKIP LIST('DISCONNECT FROM NET = 5');
PUT SKIP LIST ('*****************'********** ** "*);
PUT SKIP LIST('ENT!R SELECTION ==>');
GET LIST(SELECT);
PUT SKIP(2);
IF SELECT='l' THEN /* RECEIVE MODE */

DO;
TXBUFF(1)=2;/* LOAD FIRST THREE DEST ADDR BYTES */

63

777

TXDUFF(2)=7;/* FOR ACK REPLY IN RECEIVE MODE */
TXBUFT(3)=l;
PUT SKIP LIST('IN RECEIVE WAIT LOOP-TO RETURN TO');
PUT SKIP LIST('MAIN MENU: ENTER <CR> ==>');
PUT SKIP LIST('**************************);
PUT SKIP(2);
CALL RECEIVE;

END;
ELSE
IF SELECT='2' THEN /* NORMAL TRANSMIT */

CALL TRANS2 ;
ELSE
IF SELECT='3' THEN /* VAX TERMINAL MODE */

DO;
VTERM=1;/* SET THE TERMINAL FLAG TO TRUE */
FRSIZE=1500;
PUT SKIP LIST('******* TAX TERMIN.kL MODE ******');
PUT SKIP(1);
PUT SKIP LIST('VAX TERMINAL SERVICE:');
PUT SKIP LIST('DATA BLOCK SIZE PER FRAME=');
PUT LIST(FRSIZE);
PUT SKIP LIST('-.-....--....-.-...........');
PUT SKIP LIST('TERMINAL ENTRY BY LINE OF TEXT');
PUT SKIP LIST('BEGIN AFTER INITIAL V PROMPT: "V>"');
PUT SKIP LIST('ENTER: TEXT LINE<CR>');
PUT SKIP LIST('PROMPT WILL AUTCMATICALLY REAPPEAR');
PUT SKIP LIST('UPON ENTRY OF THE FIRST CHARACTER');
PUT SKIP LIST(COF THE NEXT LINE YOU BEGIN.');
PUT SKIP LIST(----;
PUT SKIP LIST('TO END TERMINAL SESSION:,);
PUT SKIP LIST('ENTER: " . 'CR> AFTER "V>");
PUT SKIP LIST(---------------------
PUT SKIP(1);
TXBUFF(1)=2; /* LOAD THE VAX NET ADDR INTO THE SIX*/
TXBUFF(2)=7; /* .DDRESS BYTES */
TXBUFF(3)=I;
TXBUTF(4)=O;
TXBUYY(5)=7;
TXBUFF(6)=127;
TXBUFF(7)=O;/* LOAD THE TYPE TWO TYPE FIELD BYTES */
TX3UFT(8)=0;
COUNT7C=1;
PUT SKIP LIST('V>');
DO WHILE (COUNT7C=1);

CALL SENDATA;
PUT SKIP LIST('V>');
IF VT!RM=O THEN /*END TFMINAL SESSION*/

DC;
PUT SKIP LIST('**** END TERMINAL SESSION ****');
COUNT7C=2;

EN D~

64

. , - - - - - -, .- - -_ - -. -. . - - . --.-.

-
117 0.74

ELSE
DO;

CALL INIT;
CALL RECEIVE;
PUT LIST('_HHHV>');

END;
END; /* DO LOOP */

END;
ELSE
IF SELECT='4' THEN /* VAX COMMAND MODE */DO;

PUT SKIP LIST('*** VAX COMMAND INSTRUCTIONS *');
PUT SKIP LIST(------..........
PUT SKIP LIST('TO DOWNLOAD A FILE FROM THE VAX:');
PUT SKIP LIST("ENTER THE MESSAGE:');
PUT SKIP LIST('" IFNA.ME(VAX .FTIPE(VAX)/XXX" "');
PUT SKIP LIST 'WHERE "XXX"= EXE FOR NON-TEXT FILES');
PUT SKIP LIST('AND "XXX'="TXT" FOR TEXT FILES');
PUT SKIP LIST('FILE WILL THEN BE IMMEDIATELY SENT');
PUT SKIP LIST('TO THIS HOST.');
PUT SKIP LIST(*- - - -

PUT SKIP LIST('TO UPLOAD A FILE TO THE VAX:');
PUT SKIP LIST('l.) ENTER THE MESSAGE:');
PUT SKIP LIST('" @FNAME(VAX).FTTPE(VAX)/XXX" '');
PUT SKIP LIST('TO OPEN A VAX FILE BY THE ABOVE NAME');
PUT SKIP LIST('2.) THEN:');
PUT SKIP LIST('SEND THE FILE TO THE VAX ADDRESS USING');
PUT SKIP LIST('THE NORMAL FILE SENDING SELECTIONS.');
PUT SKIP LIST(---);
PUT SKIP(1);
TRMODE-1; /*SET VAX CMD MODE FLAG TO TRUE*/
FRSIZE=128;
TXBUFF(1)=2; /*LOAD THE WAX NET ADDR INTC THE SIX */
TXBUFI'(2)=?; /*ADDRESS BYTES *1
TXBUFF (3)=1;
TXBUFF(4) =;
TXBU7F(5)= 7;
TXBUIF(6)=127;
TXBUFF(?)=0;/* LOAD THE TWO TYPE FIELD BYTES */
TXBUFF(8)=0;
CALL SENDATA;
CALL INIT;
RXBUFP(17)=255;
CALL RECEIVE;

END;
ELSE
I SELECT='5' THEN /* DISCONNECT BY EXITING TO CP/M */

COUNT7=2;
ELSE
PUT SKIP LIST('INCORPECT OPMODE SELECTION-REENTER:');

END; /* DO LOOP */

65

.N]

PUT SKIP LIST("DISCONNECTING FROM NET-RETURNING TO C?/M.');

T RAkNS2: /* GETS USER INPUT OF FILE DATA */

PROCEDURE;

DECLARE
/* LOCAL VARIABLES */
COUNT6 FIXED DINART(7),/* LOOP CONTROL*/
COUNT6A FIXED BINARY(?),/* LOOP CONTROL*/COUNT6B FIXED BINART(7),/*LOOP CONTROL*/li.:COUNT6C FIXED PINART(7),/*LOOP CONTROL'
SENDTYPE CHARACTER(1),/*USFR INPUT TRANSMIT TTPE*/
FTTP CEARACTER(1),/*USER INPUT FILETYPE*/
DRNO CHARACTER(1),/*US!R INPUT DRIVE NO.*/
/* FILE DATA ENTRY DCLS */
I FIXED,
IN CHARACTER(20)9
LOVER CHARACTER(26) STATIC INITIAL
(abcdefghi JklmnopQrstuvvxyz'),
UPPER CHARACTER(26) STATIC INITIAL
('ABCDEFGHIJKLMNOPQRSTUVWXYZ'),
/* GLOBAL VARIA3LES */
FILTYP FIXED BINARY (7) EXTERNAL,/* FILE N&TURE*/
INOP FIXED BINARY (7) EXTERNAL,/*FILE NOT OPEN rLG*/
/* GLOBAL DATA STRUCTURES */
TXBUFF(1508) FIX3D BINARY() EXTERNAL,/*TRANS BUFF*/
1 TXFCB EXTERNAL,/*TRANSmIT FILE CONTROL BLOCK*/

2 DISK FIXED BINART(7),
2 FNAME CHARACTER(8),
2 FTTP? CHARACTER(3),
2 TFCB(21) FIXED BINARY ;7),

/* EXTERNAL MODULES */
SENDATA ENTRY;/* ISO LEVEL 3 FRAME SENDER*/

COUNT6 =1;
DO WHILE(COUNT6=i);

PUT SKIP LIST('TRANSMISSION OPTIONS:');
PUT SKIP LIST('SEvND A MESSAGE = 1');
PUT SKIP LIST('SEND A DISK FILE = 2";
PUT SKIP LIST (0 ** * *************");
PUT SKIP LIST('EVTER SELECTION ==>);
GET LIST(SENDTTPE);
PUT SKIP(2);
TXBUFF(8)=0;/* TYPE FIELD BYTE 2=NORMAL MSG OR FILE*/
IF SENDTTPE='l' THEN /*SEND A MESSAGE */

DO;
TXBUFY(7)=a;/*TYPE FIELD BYTE 1=MESSAGE*/
CALL SENDATA;
COUNT6-=2;

END;

66

ELSE
* IF SENDTTPE='2 THEN /*SEND A DISK FILE*/

DO;
TIBU!F(?)=15;/* TYPE FIELD BYTE 1= FILE*/
COUNT6A~l;
DO WHILE(COUNT6A=1);

PUT SKIP LIST(NATURE OF FILE TO SEND:');
PUT SKIP LIST(TEXT (ASCII) FILE =1)

PUT SKIP LIST(MACHINE CODE (COM) FILE =2');

PUT SKIP LS(' * * * * * *)

PUT SKIP LIST(ENTER TYPE OF FILE CHOICE ==>)*
*GET LIST(FTTP);

PUT SKIP(2); *

*IF FTTP='1l' THEN
DO;

FILTYP=1;/* SET THE FILF.TYP=TEXT FILE *
COUNT6A=2;

END;
ELSE

A IF FTYP='2' THEN
DO;

FILTYP=2;/* FILE TTPE=MACHINE FILE *
2 EN COUNT6A=2;

ELSE
PUT SKIP LIST(INCORRECT CHOICE-REENTER:');

END;/* DO LOOP *
COUNT6B=1;
DO VEIL (COUNT62=1);

COUNT6C=1;
DO VEILE(COUNT6C=1);

PUT SKIP LIST('SPECIFT FILE TO SElND:');
PUT SKIP LIST('IL! LOCATED ON:');
PUT SKIP LIST(DRIVE A. = l)
PUT SKIP LIST(' DRIVE B = 2');
PUT SKIPLIT('**********')

NPUT SKIP LIST(ENTER DRIVE NUMBER==>');
GET LIST(DRNO);
PUT SKIP(2);
IF DRNO0='1' THEN

DO;
TXFCB .DISK=l;
COUNT6C=2;

END;
ELSE
IF DRNO-'2' THEN

DO;
TXFC . DISK=2;
COUNT6C=2;

END;
ELSE

67

PUT SKIP LIST('INVALID DRIVE-REENTER:');
- END;/* DO LOOP *

PUT SKIP LIST('ENTER: EILENAME.FILETYPE*==>');
GET LIST(FN);
PUT SKIP(2);

4. - YN=TRANSLATE (EN,UPPER, LOVER);
I=INDEX(FN,'.');
IF 1=O THEN

DO;
TXECB . NAME=FN;
TXFCB.FTYPS=' '

ELSEND;
ELS

* DO;
TXFCB .FNAME=SUBSTR(Ew ,1,1-i);
TXFCB .FTYPE=SUBSTR(EN 9+1);

END;
TXFCB.TFCB(1)=e;/* SET ECE FIELDS THAT COUNT=O*/
TXFC3.TFCB(4)=0;/CURRENT EXTENT,RECORD ETC. *
TIFCB.TFCB(k21)=O;
CALL SENDATk;

4 IF FNOP-=l THEN
COUNT6?=2;

END;/* DO LOOP *
COUNT6=2;

END;
ELSE

PUT SKIP LIST(INCORRECT TRANSMIT "10DE-REENTER:');
END; /* DO LOOP *
END TRANS2;

END ETHERNET;/* ISO LATER 7 MODULE :

APPENDIX I

SOURCE CODE FOR MODULE SENDATA.PLI

SENDATA: /* PRESENTATION LATER MODULE-ISO LEVEL 6 '/

PROCEDURE;

4 DECLARE
/* LOCAL VARIABLES *1
COUNT5A ?IXED BINARY(7),/*LOOP CONTROL*/
DESTADDR CHARACTER(1),/* DEST ADDRESS-USER INPUT*/
/* GLOBAL VARIABLES */

. TRMODE FIXED BINARY(7) EXTERNAL,/*VAX CMD FLAG'/
VTERM FIXED BINARY(7) EXTERNAL,/*TERMINAL FLAG*/
FRSIZE FIXED BINARY(15) EXTERNAL,/*FRAME SIZE*/
/* GLOBAL DATA STRUCTURES */
TXBUFF(1508) FIXED BINARY(7) EXTERNAL;/*TRANS BUFF*/

/*LAST REVISION: 09/15/83-09ge ORIGINAL PROGRAM:07/29/83*/
/*AUTHOR: CAPT. MARK D. STOTZER-USMC-AEGIS ,FROUP *1
/*T3ESIS ADVISCR: PROF. UNO R. XODRES-COMPUTER SCIENCE */

IT VTYRM= 1 THEN /* TERMINAL MODE *1
DO;

CALL SENDMSG;
RETURN;

END;
IF TRMODE= I THEN /* TAX COMMAND MODE /

. DO;
CALL SENDMSG;
RETURN;

END;
COUNT5A=I;
DO WHILE(COUNT5A=I);

PUT SKIP LIST('ADDRESSES 0N THIS NETWORK:');
PUT SKIP LIST('00-03-EA: MDS SYSTEM = l');
PUT SKIP LIST('00-04-0A: MDS SYSTEM = 2');PUT SKIP LIST('00-07-7F: VAX 11/780 = 3');
PUT SKIP LIST('*****,**,*,*****,*,, *********');

PUT SKIP LIST('ENTER SELECTION ==>');
,ET LIST(DESTADDR);PUT SKIP(2);
TXBUFF(1)=2; /*LOAD THE FIRST FOUR DEST ADDR BYTES*/
TXBUFF12)=7;
TXBUFF'3)=l;
TXBUFF4)=0;

6;

-- 1 . .p *

r 1 + • u+1 c - - + - " - - - - , " -'* ',-"*' -.'. * -C * *. -'.* ' " " -+ . " , . "

IF DESTADDR='1' THEN
DO;

TXBUFF(5)=3;/*LOAD LAST TWO DEST ADDR BYTES*/
TXBUFF(6) =234;
IF TXBUFF(7)=0 THEN/* SEND THE MSG*/

CALL SENDMSG;
ELSE

zl CALL SENDFILE;/*SEND THE FILE*/
COUNT5A=2;

END;
ELSE
IF DESTADDR='2' TEEN

DO;
TXBUFF(A5)=4;/*LCAD LAST TWO DESTINATON ADDR 3YTES*/
TXBUFF(6)=10;
IF TXBUFF(7)=@ THEN

CALL sENDMSG;
ELSE

CALL SENDFILE;
COUNT5A=2;

END;
ELSE
IF DESTADDR='3' THEN

DO;
TXBUFF(5)='7;/LOAD LAST TWO DEST ADDE BTTES*/
TXBUFF(6)=127;
TRMODE=0;
IF TXBUFF(?)=0 TEEN

CALL SENDMSG;
ELSE

.0 CALL SENDFILE;
CUNT5A=2;

END;
ELSE
PUT SlIP LIST(INVALID NET ADDRESS SELE-CTED-REENTER:');

END; 1* DO LOOP *

SENDMSG: /* MESSAGE SENDING MODULE *

PROCEDURE;

DECLARE /* LOCAL VARIABLES *
1* G.LOBAL VARIABLES *
MBIZE FIXED 3INART(15) EXTEPNAL,/*FRAME SIZE*/
TRMODE FIXED DINART(7) EXTEFNAL,/*VAX CMD FLA'*/
7TERM FIXED BINART(7 EXTEPNAL./*TERMINAL FLAG*/
/* GLOBAL DATA STRUCTURES *
TXBUFF(1508) FIXED BINARY(7) EXTERNAL,/*TRANS BUF*/
RX3UFF(1522) FIXED ?INART(7) !XTERNAL,/*RECV BUFF*/

lz. * TXTERNAL MODULES *
FILDUF ENTR./* LOADS TRANS.BUFFER FROM CONSOTE*/

-. 50

JI

SENDFRAM ENTR!;/* ISO LEVEL 3 FRAME SENDER*/

IF VTERM=1 TgEN /* VIRTUAL TERMINAL MODE */
DO;

CALL FILBUF;
IF TXBUFF(9)-96 THENo RETURN ;
IF TXBUF(9)=46 & TXBUFF(10)=96 THEN /*END SESSION*/

VTERM-0; /*END TERMINAL SESSION*/ELSE
CALL SENDFRAM;

END;
ELSE

DO;
PUT SKIP LIST('MESSAGE SENDER:');
PUT SKIP LIST('MAXIMUM NUMBER OF CHAP.ACTERS= ");
PUT LIST(FRSIZE);
PUT SKIP LIST('ENTTR MESSAGE AFTER PROMPT: >');
PUT SKIP LIST('END MESSAGE WITH ACCENT: "
PUT SKIP LIST('>');
CALL FILBUF; /*FILL TRANSMIT BUFFEP FROM CONSOLE*/
CALL SENDFRAM; /* SEND THE MESSAGE */

END;
END SENDMSG;

SENDFILE: /* FILE SENDING MODULE*/

PROCEDURE;
DECLARE /* LOCAL VARIA3LES */

COUNT4 FIXED BINART(7),/*LOOP COITROL*/
/* GLOBAL VARIABLES */
FILTYP FIXED BINARY(7) EXTERNAL,/*FILE NATURE*/
FNOP FIXED BINARY(?) EXTERNAL,/*NOT OPEN FLAG*/
LFRM FIXED BINARY(?) EXTERNAL,/*LAST DATA FLAG*/
/* GLOBAL DATA STRUCTURES */
TXBUFF(1508) FIXED BINARY(7) EXTERNAL,
/* EXTERNAL MODULES */
VAXTXT ENTRY./* CP/M TO VAX FORMAT CONVERTER*/
TRNDMA ENTRY,/*TRANSMIT SET DMA kDDRESS*/
OPENDF ENTRY,/*OPEN DISK FILE*/
RDISK ENTRY,/*READ DISK FILE RECCRD*/
SENDFRAM ENTRY;/*ISO LEVEL 3 FRAME SENDER*/

/*LAST REVISION: 08/25/83-1530 ORIGINAL PRCGRAM:08/16/8" *1
/*AUTHOR: CAPT. MARK D. STOTZER-USMC-AEGIS GROUP
/*THESIS ADVISOR: PROF. UNO R. KODRES-COMPUTER SCIENCE */

TXBUFF(7)=15;/* LOAD TYPE FIELD BYTES*/
TX2UFF(8)=0;
CALL OPENDF;
IF FNOP=1 THEN /*FILE NOT ON DISK*/

2LA1

DO;
PUT SKIP LIST('FILE NOT ON DISK-REENTER DATA:');
PUT SKIP(2);
RETURN;

END;
IF TIBUFF(6)-127 & FILTTP=I THEN

CALL VAXTXT; /*VAX TEXT FILE FORMAT COAVEPTER*/
ELSE

DO;
CALL TRNDMA; /* SET DISK DMA ADDRESS*/
PUT SKIP LIST(******* FILE TR.NSFER BEGINS *');
PUT SKIP(2);
COU.T4= 1;
DO WHILE(COUNT4=1);

CALL RDISK;/*READ A DISK FILE RECORD*/
IF LFRM-=1 THEN

DO;
CALL SENDF A ;
TXBUFF(8)=I;/*ENCODE TYPE FLD=INTERMED FRAME*/

END;
ELSE

COUNT4=2;
END;/* DO LOOP */
TXBUFF(8)=255;/*ENCODE TYPE FIELD=LAST FRAME*/
CALL SENDFRAM;
PUT SKIP LIST('***** FILE TRANSFER ENDS *');
PUT SKIP(2);

,t4 RETURN;
END;

END SENDFILE;

END SENDATA; /* ISO LAYEP 6 TRANSMIT MODULE */

72

'td;, ,
° ''

"",. ", ' ' @ ,'','.',' "- -' ,'''-, -' ." '.--, ." .- ' . ." ." " . ." - .- ,- - . . --, .- . , . .- ., - - - -. - - .. .' 1

A

APPENDIX J

SOUPCE CODE FOR MODULE RECDATA.PLI

RECDATA: /* ISO LAYER 6 RECEIVE MODULE */

PROCEDURE;

DECLARE /* GLOBAL DATA STRUCTURES */
RXBUFF(1522) PIXED BINARY(7) EXTERNAL;/*RCV 3UFF*/

/*LAST REVISION: 09/15/83-1215 ORIGINAL PROGRAM:08/17/83 */
/*AUTHOR: CAPT MhRK D. STOTZEP-USMC-AEGIS GROUP
/*THESIS ADVISOR: PROF. UNO R. KODRES-COMPUTER SCIENCE /

IF RXBUFF(17)= 0 THEN /* MESSAGE FRAME */
CALL CONMSG;

ELSE
IF PXBUFF(17)= 15 THEN /* FILE FRAME */

CALL FILER;
ELSE

PUT SKIP LIST('RECEIVED IMPROPERLY ENCODED FRAME');

CONMSG: /* MESSAGE RECEIPT MODULE */

PROCEDURE;

DECLARE /* GLOBAL VARIAbLES */
TRMODE FIXED BINARY(7) EXTERNAL,/*VAX CMD FLAG*/
FRSIZE FIXED BINART(15) EXTYRNAL,/*FRAME SIZE*/
VTERM FIXED BINARY(7) EXTERNAL,/*TERMINAL FLAG*/
/* GLOBAL DATA STRUCTURES */
RXBUFF(1522) FIXED BINARY(7) EXTERNAL,/*RECV BUF*/
/* EXTERNAL MODULES */
TRMSG ENTRY,/* ACKNOWLEDGE SE.DER*/
EMTBUF ENTRY;/*DUMPS RECEIVE BUFFER TO CONSOLE*/

IF VTERM =1 THEN /* NOT IN VIRTUAL TERMI4AL MODE*/
DC;

PUT SKIP LIST('***** RECEIVED MESSAGE IS:');
PUT SKIP(2);

END;
CALL EMTBUF; /* DUMP THE RECVD FRAME DATA TO CONSOLE */
CALL TRMSG; /* SEND THE &CK FRAME /
IF VTEPM = THEN /*NOT IN TERMINAL MODE*/

73

I

' , e , ~~~~~~~~~~~~~.. ;.. ,.

DO;
PUT SKIP(2);
PUT SKIP LIST('***** END OF MESSAGE TEXT.');
PUT SKIP(2);
PUT SKIP LIST('WBACK IN WAIT LOOP-ENTER<CR> TO EXIT=>');
PUT SKI? LIST (*****"*** ********* *********");
PUT SKIP(2);

END;
ELSE
IF RXBUFF(18)= 15 THEN /*LAST FRAME OF TERMINAL REPLY*/

PUT SKIP LIST('V>');
END CONMSG;

FILER: /* FILE FRAME RECEIPT MODULE*/

PROCEDURE;

DECLARE /* !LOBAL VARIABLES */
TRMODT FIXED BINARY(7) EXTERNAL,/*CMD FLAG*/
RECFIL FIXED BINARY '?) EXTERNAL,/*RFILE NO.*/
VTFRM FIXED BINARY(7) EXTERNAL,/*TERM FLAG*/
/* GLOBAL DATA STRUCTURES */
1 RXFCB EXTERNAL,/*RECEIVE FILE CONTROL BLOCK*/
2 DISK ?IXED BINARY(7),
2 FNAMT CHARACTER(8),
2 FTYPE CHARACTER(3),
2 TFCB(24) FIXED BINARY(),

RXBUFF(1522) FIXED BINARY(7) EXTERNAL,/*RX BUF*/
/* EXTERNAL MODULES */
RCVDMA ENTRT,/*SETS RECEIVE DISK DMA ADDR*/
DELEDF ENTRY,/*DELET!S FILES*/
MAKEDF ENTRT,/*MAKES NEW DISK FILES*/
WRDISK ENTPYo/*WRITES A DISK RECORD*/
TRMSG ENTRY,/*SENDS ACK FRAMES*/
CLOSDF ENTRY;/*CLOSES DISK FILES*/

CALL RCVDOA;
IF RXBUFF'le)=0 THEN /* FIRST FIL FRAME */

DO;
PUT SKIP LIST('******* FILE RECEIPT BEGINS *****');
PUT SKIP LIST(' OPFNING FILE- RECFROM.NET:');
PUT SKIP(2);
AXFCB.FNAME='RECFROM '; /*NAME THE RECEIVED FILE*/
RXFC3.?TYPE=.'NET';
RXCP.TFCB(I)=a; /*ZTRO T.REE FIELDS OF FCB*/
RXIPCB.TFCB(4)aG;
RXFC3.TFCB(21)=0;
CALL DELEDF; /*DELFT! OLD FILE OF THIS PI.FT*/
CALL MAKEDF; /*CREATE A NEW ONE*/
CALL WRDISK; /*WPITE FIRST RECORD(128 BYTES) TO DISK*/

74

CALL TFMSG; /* SEND THE FIRST ACK FRAME */
END;

ELSE
IF RXBUFFr18)=I THEN /*INTERMEDIATE FILE FRAME*/

DO;
CALL WRDISK; /*WRITE NEXT RECORD TO DISK*/
CALL TRMSG; /* SEND THE ACK FRAME */

END;
ELSE
IF RXBUFF(18)=255 THEN /*LkST(DUMMY) FILE FRAME*/

DO;
CALL CLOSDF; /*CLOSE THE DISK FILE*/
PUT SKIP LIST('******* END FILE RECEIPT * *')

*PUT SKIP LIST(' SEE FILE(S):R!CFROM_.NET');
PUT SKIP(2);
CALL TRMSG /*SEND THE LAST ACK */
PUT SKIP LIST(" NOTE:');
PUT SKIP LIST(-------------------------------------
PUT SKIP LIST('IF RECEIVED FILE IS A TEXT FILE ?ROM');
PUT SKIP LIST('THE VAX THEN REFORMAT USING:');
PUT SKIP LIST(''PIP FNAME.FTYPE=RECFROM.NET[D80J');
PUT SKIP LIST('WHEPT FNAME.FTYPE IS YOUR CHOICE');
PUT SKIP LIST(' -- - -

PUT SKIP(2);
IF VTERM=l THEN

DO;
PUT SKIP LIST('STILL IN VAX TERMINAL MODE:');
PUT SKIP LIST('V>');

END;
ELSE

DO;
PUT SKIP LIST('IN WAIT LOOP-ENTER<CR> TO EXIT');
PUT SKIP LIST ("*'*" *** *** ");
PUT SKIP(2);

I N D~
END;

ELSE
PUT SKIP LIST(' FRAME TYPE FIELD BYTE 2 INVALID CODE');

END FILER;

END PECD&TA; /* ISO LATER 6 RECEIVE MODULE */

75

APPENDIX K

SOURCE CODE FOR MODULE ETHER2.ASM

PROGRAM NAME:ETHER2.ASM

; THIS MODULE PERFORMS THE ISO LAYER 2 AND 3 FUNCTIONS IN
; TRANSMIT AND RECEIVE AND PROVIDES THE ISO LAYER 7
; RECEIVE MODULE

APPLICATION LATER(LATER ?):IN RECEIVE ONLY- WAIT LOOP
* FOR FRAME ARRIVAL.

NETWORK LAYER(LAYER 3):TRANSMIT CR RECEIVE FRAMES

DATA LINK LAYER(LAYER 2):PROCESSES ACKNOWLEDGE FRAMES
IN ADDITION TO THE LAYER 2 FUNCTIONS PERFORMED BY THE
N13010 CONTROLLER BOARD.

; THIS MODULE ALSO ALLOWS ALL OTHER MODULES TO ACCESS
THE CP/M-8e OPERATING SYSTEM FUNCTIONS SHOWN BELOW

; LAST REVISION: 09/16/3-100i0 ORIGINAL ?ROGRAM: 08/14/83
; AUTHOR: CAPT MARK D. STOTZER-USMC-AEGIS MODELING GROUP
; THESIS ADVISOR: PROFESSOR UNO R. KODRES-COMPUTER SCIENCE

PUBLIC INIT; SU3ROUTINES AVAILABLE TO EXTERNAL MODULES:
PUBLIC RECEIVE
PUBLIC FILBUF
PUBLIC EMTBUF
PUBLIC NULBUF
PUBLIC AWAIT
PUBLIC TRMSG
PUBLIC WRDISK
PUBLIC VAXTXT
PUBLIC SENDFRAM
PUBLIC RDISK
PUBLIC OPENDF
PUBLIC DELEDF
PUBLIC MAKEDF
PUBLIC CIOSDF
PUBLIC FCVDMA; MODULES CALLED BY THIS MODULE

76

l
- ' : . - - i i ;

- - . - , .-. -, . , ' -. '- . .- .- - - , :. ..1 ' - w , . o • .. .

PUBLIC TRNDMA
EXTRN RECDATA
; N13010 BOARD REGISTER PORT ADDRESSES:
CREG EQU 00BeH; COMMAND REGISTER
SREG EOU 00Bl; COMMAND STATUS REGISTER

: ISREG EOU OZB5H; INTERRUPT STATUS REGISTER
IEREG EQU 00B8H; INTERRUPT ENABLE REGISTER
EBAR EQU 00B9H; EXTENDED BASE ADDRESS REGISTER
HEAR EOU 00BAH; HIGH BASE ADDRESS REGISTER
LBAR EQU 0OB3BH; LOW BASE ADDRESS REGISTER
HREIG EOU 00BCH; IGE BYTE COUNT REGISTER
LBREG EOU O0OBDH; LOW BYTE CCUNT REGISTER
;CP/M WARM BOOT ENTRY POINT:
EXIT EOU 0003H; WARM BOOT-TERMINAL ERROR ESCAPE
;BDOS EQUATES:
BDOS EOU 0ee5H; BDOS ENTRY POINT
;BDOS FUNCTION CODES:
CONSIN EOU 01H; CONSOLE CHARACTER INPUT
CONSOUT ECU 02H; CONSOLE CHARACTER OUTPUT
PSTRING EOU e9H; PRINT STRING
CONSTAT EOU ODE; CHECK CONSOLE STATUS
OPENFIL ECU 07H; OPEN A DISK FILE
CLOSEF EQU 1OH; CLOSE A DISK FILE
DELETE EQU 13H; DELETE A DISK FILE
READY EOU 14H; READ A DISK FILE RECORD-128 BYTES
WRITE7 EOU 15H; WRIT! A DISK FILE RECORD-128 BYTES
MAKE? EOU 163; CREATE A NEW DISK FILE
SDMA EOU IAH; SET DISK DMA ADDRESS*! ; ***

; INIT- INITIALIZES INTERRUPT VECTOR AND A 13012 REGISTERS:

INIT DI
IN SRErs; READ STATUS REGISTER TO CLEAR
MVI A,031H; CLEAR N13010 RECEIVE BUFFER
OUT CREG
CALL READ
MVI A,12H; SET UP INTERRUPT CONTROL
OUT 01DR
9vI A,001
OUT OFCH
mVI A,ODF.R; ENABLE INT5 ONLY
OUT 07CH
MVI A,0C3!
STA 0028H
LXI 9,RSCFRAM1 ,SHLD oe29H
LXI H,ACK
MVI A,OPFH; PRELOAD ACKNOWLEDGE BUFFER
MOV M,A
LXI H,CEREG; ENASLE RECEIVE(3BA) INTERRUPT

77

*!.. '-; ,: ' .1WV : -- q . *-, . -~o r..., .r
"
- . .n-y-P . - .- - - ' - ~3 -". .

MVI A04H
MOY M,A
CUT IEPFG
MVI A,09H; 413010 ONLINE COMMAND
OUT CREG
CALL READ
EIRIET

RECEIVE:ISO LAYER 7-WAIT LOOP FOR INCOMING FRAMES:

WAITLP NOP
NOP
NOP
NOP
NOP
DI
LXI HFAMIN
MOV AM
CPI 01H; HAS A FRAME ARRIVED?
JNZ NOTET
CALL RECDATA
MVI A,OOH; RESET FRAME ARRIVAL FLAG
STA FFP.MIN

NOTTET MVI C.CONSTAT
CALL PDOS
CPI 009
RNZ
EI
iMP WAITLP

; RECFRAM-PERFORMS ISO LEVEL 3 FUNCTION IN THE RECEIVE
MODE:RECEIVES FRAMES AND TRANSFERS THEM TO MEMORY.
YANDLES ALL 4I3010 INTERRUPTS AND ENABLES.

RECFRAM DI
PUSH PSW
PUSH 3
PUSH D
PUSH H
LXI H,CEREG
MOT 3,M
MVI A,00H
LXX H,CEREG; DISABLE N13013 INTERRUPTS
MOV M,A.

OUT I ER EG
MOV A,3
MVI 3,04H

79

w.-k k
7A ~ .. . * ~ . - -

CMP B
JZ RDA; RECEIVE FRAME INT WAS ENABLED

JZ RDD; RECEIVE DMA INT WAS ENABLED
imp RDD2;t IF TRANSMIT DMA INT WAS ENABLED

RDA mv! ,O
OUT EBAR
LXI R,RBU7YT; TOP 07 RECEIVE BUFFERa
MOY AIR
OUT EBAR
mov AIL
OUT LBAR
LELD FESIZE
LXI D,0016H; ADD 22 To IT

DAD D9

OUT HBREG
MOY AIL
OUT LBREG
LXI Hf,CEREG
MVI A,07Ef; SET IHT ENABLE TO RDD
MOV MIA
OUT IE.G
imp FIN!

RDD LXI H,RBUFFT; TOP OF RECEIVE BUFFER
MOY A.M
c?! ~ 0; TESTS FOR GOOD FRAME
JNZ FRERR; BAD RECYD FRAME
MV! A.01H; SET FRAME ARRIVED FLAG
STA FRAMIN
1,1I H,RTT?31; TEST FOR FECYD ACI FRAME
MO? AIM
CPI 00H
JNZ RDD2
LXI H,RTYP92
MO? AIM
CPI 67FE
JNZ RDD2
MYI A,01H
STA AC!; ACK FRAME RECVD
imp RDD2

FREER DI
L.XI H,CIR!*G

MO? MA; DISABLE BOARD INTERRUPTS
CUT ITREG
LXI D,FERMSG0
CALL TXTOUT

*LXI DOTERRMSG
CALL TXTOUT

79

" -: - - - , o . - . L . w ' ,r . -. . - " --- - , -7
'I

JMP EXIT; ESCAPE TO CPM
RDD2 LXI HCEREG

MVI A,04H
MOv M,A; PESET INT ENABLE TO RBA
OUT I EREG

FINI POP H
POP D
POP B
M¥1 A,e20H; RESTORE INT PP.IORITY
OUT OFDH
POP PSV
EI
RET

FILBUF-PLACES CONSOLE INPUT MESSAGES INTO TRANSMIT BUFFER

FILBUF LELD FRSIZ!; LOAD COUNT=FRAME SIZEXCHG

PUSH D
LXI H,TYDATA; LOAD ADDR =TRANSMIT DATA TOP
PUSH H

MSGLP MVI C,CONSIN; INPUT CONSOLE CHAR.
CALL BDOS
POP H
POP D
CPI ODE; WAS CARRIAG _ RETURN INPUT?
JNZ RDCP
PUSH H YES
LXI HVTRM; IN TERMINAL MODE?
MOV AIM
CPI 0HB
JZ VTEND; THEN THIS IS END OF MSG.
POP H
MOY M,A; STORE THE CHAR.
14X H
Mvi A,0AH; ADD A LINE FEED
MOV M,A; STORE THE LINEFEED TOO
PUSH D
PUSH H
MVI CCONSOUT; OUTPUT IT TO CONSOLE
mOV E,A
CALL BDOS
POP H
POP D
JMP RDCON; CONTINUE TO READ THE BUFER

RDCP CPI 0SH; BACKSPACE=8=CMTL-H
JZ BACKSP
CPI 6OH; GRAVE ACCENT='=END OF MESSAGE
JZ SENT
MOV M,A; STORE THE CHAR.

80

DCX D; DECREMENT THE COUNTER
MOY A,D
ORA E
JNZ RDCON; IF CTR NOT ZERO THEN CONTINUE READ
PUS3 H
LXI D,LONGMSG;ERROR MSG:TOO MANY INPUT CHAR.
CALL TXTOUT

VTEND POP H; TERMINAL MSG IN BUFFER-DONE
MvI A,60H
JMP SENT

RDCON PUSH D; CONTINUE BRANCH
INX H
PUSH H
JMP MSR4LP; GET ANOTHER CHAR

BACKSP INX D
PUSH D
DCX H
PUSH H
JMP MSGLP; GET ANOTHER CHAR

SENT MOT MA; STORE THE CHAR
PUSH H
LXI D,DADDI; LAST ADDR BYTE
MOV A,M
CPI 07FE; IS VAX =DESTINATION?
JZ SENFIN
POP H
MVI A.OH
MOV M,A; SOTRE A NULL IN PLACE OF ACCENT
CALL SOLN
RET

SENFIN POP H
CALL EOLN
RIT

; EMTBUF-DUMPS RECEIVE BUFER TO CONSOLE:

EMTBUF LHLD FRSIZE
XCEG
PUSH D
LXI H,RDATAT; TOP OF RECEIVE BUFFER

CONLP MVI CCONSOUT; CHAR TO CONSOLE
MOT E,M
PUSH H
CALL B"DOS
POP H
POP
DCX D
MOT A,D
ORA
JZ "ISGDONS; I7 COUNT=FRAME SIZE-DONE

* .1 .S " - .

PUSH
INX H
JMP CONL?

MSGDONE CALL EOLN
CALL _OLN
RET

VAXTXT-CONVERTS CPM FORMAT TEXT FILES TO VAX FORMAT:

VAXTXT C)LL FOLN
MVI C,OPENFIL; OPEN TEE DISK FILE
LXI D,FCBIN
CALL BDOS
CPI OFFH; TEST IF OPEN SUCCESSFUL
JZ FERRI
MVI C,SDMA; SET THE DISK DMA ADDRESS
LXI D,TXTTOP
CALL BDOS
LXI DTRMSGI
CALL TITOUT
CALL EOLN
LXI H,TXTTOP; TOP OF TEXT BUFFER
PUSH H
LXI DTFDATA; TRANSMIT PUFFER 1ST DATA BYTE
PUSH D
MvI 3,00H; BYTE CTR=G
PUSH
CALL NUL3UF; FILL TRANSMIT 3UFFER WITH 00 HEX

READREC MVI C,READF; READ A DISK FILE RECORD=128 BYTES
LXI DFC3IN
CALL 3DOS
CPI OOH; IS THIS LAST RECORD?
JNZ ENDRD

RDLPA POP P
, POP D

* ., POP H
INR 3; INCREMENT COUNTER
MO A,B
CPI 081E;=129 LAST BYTE THIS RECORD
JZ READ2; GET ANOTHER RECORD
MOV A,M
CPI ODE; CRET?
JZ SKIP2
CPI OAH; LFEED?
JZ SKIP3
XCH G

MOY M,A
XCHG
INX H
INX D

82

.................................. - '" " - " ...

..- L . . . ; ' , ,w .-- -. . -.V V ' -'- '

PUSH H
PUSH D
PUSH ?
JMP RDLPA

SKIP2 INX 9; IF ETTE=CRET THEN SEND THE FRAME
PUSH H
LXI D,TFDATA
PUSH D
PUSH B
CALL SENDFRAM; SEND IT
CALL NUL3UF; NULL THE BUFFER AGAIN
MVI A,01H; SET TYPE FIELD=INTERMED FRAME
STA TTYP2
JMP RDLPA; READ NEXT BYTE AFTER SKIP CRET

SKIP3 INX H; IF LINEFEED THEN SKIP AND READ MORE
PUSH H

"' PUSH D
PUSH B
JMP RDLPA

READ2 LXI H,TXTTOP; IF CTR >128 THEN GET RECORD
PUSH H
INX D
PUSH D
MVI B,00H; RESET BYTE CTR
PUSH P
JMP READREC GET THE NEXT RECORD

ENDRD MVI A,OFFF
STA TTYP2
POP B
POP D
POP H
CALL SENDFRAM
LXI DDMSG
CALL TXTOUT
RET ; DONE

FERRI LXI D,ERMSG; ERROR MSG-FILE NOT OPEN
CALL TXTOUT
'iET

; ISO LEVEL 3 TRANSMIT FUNCTION-SENDFRAM:

; SENDFRAM-SENDS FRAMES ON TRE ETHERNET:

SENDFRAM DI
LOCP1 LXI H,CEREG; LOOP UNTIL ENABLE REG= 0 OR 4

MOV A,M
CPI oel
JZ GO
CPI 04H
JZ Go

83

JMP LOOP1; KlEP CHECKING
GO DI

LXI HCEREG§.-, MOV AM
CPI 00H
JZ GOl
CPI 04H

El
JMP LOOPI; IF CHANGED GO BACK TO LOOP

G01 Mi A,00H
LXI H,CEREG; DISABLE N13010 INTERRUPTS
MOT M,A
OUT IER EG
El
MVI A,00H; LOAD TRANSMIT ADDR/BYTE COUNT
OUT EB.R

: LXI HTBUFFT; TOP OF TRANSMIT BUFFER
MOV A,H
OUT HBAR
MOV A.L
OUT LBAR
LHLD FRSIZE; SET TRANSMIT FRAME SIZE
LXI D,0008H; ADD 9 TO IT
DAD D
MOV A,H
OUT HBREG
MOV A,L
OUT L3REG
DI
MVI A,06H
LXI H,CEREG; ENALE TRANSMIT(TDD) INTERRUPT
MOV M,A
OUT IER rG
El
ELT ; WAIT FOR THE INTERPUPT

COMP LXI H.CEREG
MOV A,M

. CPI 06H; HAS TDD I4TRRUPT ARRIVED?
JZ COMP
DI
LXI H,VTERM
MOV A,M
CPI 01H; VIRTUAL TERMINAL MODE?
JZ VTCON
LXI),MSG1
CALL TXTOUT

VTCON EI
MVI A,029H; NI3010 LOAD TRANSMIT AND SEND CMD.
DI

84

. . . . %* -p =- * * , ..- ' ,_ ', . , - . • •. ., .. , ,

.OUT CREG
CAL TRREAD
LXI H,ACK; SET ACK TO SENT
MVI A,00H
MOT M,A
El
CALL AWAIT; WAIT FOR ACKMOWLEDGE FRAME
RET

;ISO LEVEL 2 ROUTINES: AWAIT(TRANSMIT) AND TRMSG(RECEIVE):

* ; AWAIT-WAITS FOR RETURN OF ACKNOWLEDGE FRAMES:

AWAIT LXI D,00eoF FIRST TIMER LOOP COUNTER
TRNLP LXI BOFFFFH; INNER LOOP
TRNLP1 LXI H,ACK

moT A,M
CPI 01H; RECEIVED ACK YET?
JZ BACK
DCX 3
MOY A,C
ORA B

*JNZ TRNLP1
DCX D
MOT ks
ORA D
JNZ TP.NLP

"1LXI D,TIMMSG; TIMED OUT-ABORT
CALL TITOUT
LXI D,T3RRMSG
CALL TXTOUT
imp EXIT; ESCAPE TO CPM

BACK MYi A,OFFH; RESET ACK FLAG
STA AC!
MVI A,OOH; RESST FRAME ARRIVAL FLAG
STA FRAMIN
RET

;TRMSG-SINDS ACKNOWLEDGE FRAMES IN RECEIVE MODE:

TRMSG MVI C,03H; CTR=3
LxI 3,SRCADDD
LXI D,DADDD

LOOP2 MOT A,M
IC HG
MO! M,A
XCHG
DCR C
JZ LDCONT

85

INXH
INX D
imp LOOP2

LDCONT MVI A,02eH; RESET INTERRUPT PRIORITY
OUT OPDH
MYI A ,0 OH
OUT EB -4R

LXI H,TBUFFT
MO? AIH
OUT HBAR
MO? Al,
OUT LBAR
LELD FrSIZE
LXI D,0009H
DAD D
MO? A,H
OUT HBREG

-%MO? AL
OUT LBREG
MI A,00H; LOAD TYPE ?IELD=ACK FRAME
STA TTYP1
MYT A,0FR; AC! FRAME
STA TTYP2
Mni A,06H; ENABLE TDD INTERRUPT
LXI H,CEREG
MO? MIA
OUT IEREG
Er
HILT ;WAIT FOR THE INTERRUPT

DONE LXI H,CEREG
MO? A,M
CPI 06H; TRANSMIT DMA DONE?
JZ DONE
DI
MV! A,029H; LOAD TRANSMIT AND SEND COMMAND
OUT CREG
CALL THREAD
RET

;OPERATING SYSTEM SU3ROUTINES:

RDISK MI A,00E; FEkDS A DISI FILE RECORD=128 BYTES
STA LYRM ; PRELOAD LAST FRkME FLAG
LXI D.FOBIN
"~I C,READF
CALL PDOS
CPI OOH; =NOT LAST FRAME
R Z

MvI A.'1R;=LAsT FRtME
STA LERM

86

4~AI ' L

RET

WHDISK MVI C,VBITEF;WRITES DISK FILE RECORD-126BYTTES
LXI D.FCBOUT
CALL BDOS
CPI 00OH
JNZ DWER
LXI D,VRMSG
CALL TXTOUT
RET

DWERR LXI H,CEREG
MV! A,0O!!; DISABLE BOARD INTERRUPTS
OUT EG
LXI D,DVMSG
CALL TXTOUT
imp EXIT; ESCAPE TO CPM

OPENDY MV! A,0?H; OPENS DISK FILES
I ~STA 740?

LXI D,FCBIN
MV! C,OPFNFIL
CALL BDOS
CPI OFFH; OPENING ERROR
RNZ
mv! A,JlH

VSTA YNO?
RET

DILED? LXI H,RSCFIL; DELETES EXISTING DISK FILES
mov A,M
INR A; INCREMENT RECEIVED M'IE NUMBER
STA RECFIL
STA FCOUT'8
LXI D.FCBOUT

NMV! C,DELITS
CALL 13DOS
RET

MAKEDF LXI D,FCBOUT; MAKES A NEW DISK FILE
MV! C,MAKFF
CALL BDOS
RET

CLOSDF LXI D,FCBCUT; CLOSES A DISK FILE
Mv! C,CLOSEY
CALL 3DOS
RET

RCVDMA LXI D,RDATAT; SETS DISK DMA FOR RECEIVE MODS
mvr C,SDMA

CALL 3DOS

48

RET

TRNDMA LXI D,TFDATA; SETS DISK DMA ADDR. FOA TRANSMIT
*MV! C,SDMA

CALL BDOS
RET

;UTILITY SUBROUTINES:
; R.EAD-READS THE COMMPND STATUS REGISTER AFTER EACH COMMAND:

READ MV! B,11111110B
MV! C,oeH

STLP IN ISREG
ORA 3
CPI GFE; STATUS READY TO BE REAi;2
JNZ STLP
IN S RE~
CMP C
Jz STDONE
imp ERROR

TEREAD MVI B,11111110?
STLP. IN ISREG

ORA I
CPI 07Th
JNZ STLP1
IN SREG
CPI OOH
JZ STDONE
CPT 01H
JZ STDONE

ERROR LXI D,EMSG
CALL TXTOUT

STMCNI RET

;TXTOUT-OUTPUTS TEXT STRINGS TO THE CONSOLE:

TITOUT MV! C.PSTRING
CALL 3DOS
CALL ZOLN

;EOLN-GE'J!RAT!S CARRIAGI RETURN *LINE FEED:

EOLN MV! C,CONSOUT
MV! 1,0DB.
CAL" BDOS
MV! C.CONSOUT
MV! E,OAH
CALL BDOS
RET

88

NULBUF-FILLS THE TRANSMIT BUFFER WITH NULLS(00 HEX):
NULBUF MVI C,0080H; CTR=128

LXI HTFDATA
NULLOOP MVI A,00H

MOT M,A
DCR C
RZ
INX H
iMP NULLOOP

* STORAGE ALLOCATION:

FRAMIN DS 1 ; FRAME ARRIVAL FLAG
CEREG DS 1 ; COPY OF INTERRUPT ENABLE REG VALUE

NEEDED MESSAGES:
TRMSGI D3 '* ** FILE TRANSFER BEGINS **"
DMSG DB '** FILE TRANSFER COMPLETE ** $"
ERMSG DE 'FILE NOT ON DISKS'
NORISMSG DB 'ON RESPONSE FROM VAX-EXITING TO CPMs"
LONGMSG DB 'MAX CHARACTER LENGTH REACHED-MSG SENT$'
TIRRMSG DS 'UNRECOVERABLE ERROR-EXITING TO CP/M$'
TIMMSG D3 'TIMED OUT-ABORTING TRANSMISSION$'
EMSG D3 'N13010 COMMAND FAILEDS'
MSGl DB 'TX$'
FERMSGO DB 'RECEIVED BAD FRAMES'
WRMSG DB 'RIS'
DWMSG DB 'DISK WRITE ERROR-DISK FULLS'
COMMON/TXYCB/
CRIN DS 36; TRANSMIT FILE CONTROL ?LOCK
COMMON/RXYCB/
FCBOUT DS 36; RECEIVE FILE CONTROL BLOCK
COMMON/TXBUYY/
TBUYFT DS 1 ; TANSMIT BUFFER TOP-iST DEST ADDBYTE
DADDB DS 1 ; SECOND DEST ADDR BYTE
DADDC DS 1 ; THIRD DEST ADDR BYTE
DADDD DS 1 ; FOURTH DEST ADDR BYTE
DADDE DS 1 ; FIFTH DEST ADDR BYTE
DADDY DS 1 ; SIXTH DEST ADDR BYTE
TTYP1 DS I ; FIRST TYPE FIELD BYTE
TTTP2 DS 1 ; SECOND TYPE FIELD BYTE
TYDATA DS 1500; DATA FIELD MAX SIZE
COMMON/RXBUFF/
RBUF7T DS 13; RECEIVE BUFFER TOP-FRAME CHECK BYTE
SRCADDD DS 1 ; FOURTH SRCE ADDR BYTE
SRCADDE DS 1 ; FIFTH SRCE ADDR BYTE
SRCADDP DS 1 ; LAST SRCE ADDR BYTE
RTYPE1 DS 1 ; FIRST RECV: FRAME TYPE FLD BYTE
RTYPE2 DS 1 ; SECOND RECVD TYPE FLD BYTE

89

RDATAT DS 1500; RECVD DATA FIELD MAX SIZE
CRCBYT DS 4 ; CRC FIELD
COMMON/TXTBUP/
TXTTOP DS 128; VAX TEXT TEMP BUFFER
COMMON/FRSIZE/
FRSIZE DS 2 ; ACTUAL FRAME DATA BLOCK SIZE
COMMON/ACK!/
ACK DS 1 ; ACKNOWLEDGE FLAG LOCATION
COMMON/PNOP/
FNOP DS 1 ; FILE NOT OPEN FLAG
,:OMMON/LFRM/
LFRM DS 1 ; LAST FRAME FLAG
COMMON/TRM0DE/
TRMODE DS 1 ; VAX TRANSMIT FLAG
COMMON/FILTYP/
FILTTP DS I ; TYPE OF FILE TO SEND
COMMON/RECFIL/
RECFIT DS 1 ; RECEIVED FILE NUMBER
COMMON/VT!RM/
VTERM DS 1 ; VIRTUAL TERMINAL SERVICE FLAG

END; ASSEMBLY LANGUAGE MODULE ETHER2.ASM

90

APPENDIX L

TEST PROGRAM USER INSTRUCTIONS

The Ethernet hardware test programs, 3THTESTA and

ETHTESTP, are used in the manner below:

1. Invoke either program using normal CP/M-80 procedures.

2. Both programs first command the NI301 to run it's
built-in diagnostic tests and report failures to the
user via the console. The codes that ETHTESTB will
display as ASCII letters are encoded as noted at the
end of the ETHTESTB.ASM source listing.

3. Next, both prokrams ask the user to input a short line
of text that the programs use in testing the integrity
of the essential lata paths of the N13010. Program
ETHTEST2 will ask the user for a second text line
input because it performs one more test than ETHTESTA.
The maximum number of characters per line is 42 and
the line must be ended with a grave accent:

4. The tests are successful if no error indications are
displayed on the console and the text typed in is
shown on the console exactly as it was entered after
each data path input.

91• 7

APPNDIX M

COMMUNICATION PROGRAM USER INSTRUCTIONS

The instructions for use of the communication program

ETHERNET.COM are as listed below:

1. Invoke the program ETHEE.NET usinR normal CP/M-e0
procedures.

2. The program will then ask for the selection of:
A. The disk drive number to write any received files

to.
B. The desired number of data bytes per Ethernet

frame.
C. The network service desired. The choices are:

1. Send messages or files.
2. Receive messages or files.
3. Virtual terminal service with the VAX.
4. Command file transfers to or from the VAX.
5. Disconnect from the network.

Depending on which of the above services is requested

by the user, the program will do the following:

1. Send a file or message: The program will ask the user
to specify which one and, depending on the response.
will do the following:
A. If message sending is selected, the program will:

1. Ask the user to choose the network address of
the destination. "-

2. Then ask the user to input the message itself.
The maximum message size is determined by the
previously selected data block size. The last
character entered in order to transmit must be
a zrave accent character. - '

3. The message is then sent and upon successful
receipt by the destination host the program
restarts.

B. If file sendine is selected, the program will:
1. Ask the user if the file is a text or machine

code file.
2. Ask the user to specify which disk the file is

located on.
3. Ask the user the filename and filetype of the

92

- - --- - - -~ -.. - -

file.
4. Ask the user to specify the network address of

the destination.
5. Upon successful transmission of the entire

file the program will restart.

2. Receive a file or messaRe: The prorram will, uponselection of this mode, wait in a loop for any
transmissions addressed to it to arrive. After the

receipt of any file or message, the program will
return to the wait loop. This feature allows the
user to leave the system unattended and then send
multiple files and/or messages to it from another
network host. The oroaram numbers files in the
order they are received beginning with RECFROMO.NET,
etc. Text files received from the VAX must be run
through the CP/M PIP utility as follows:'PIP newfilname.filetype=RECFROM_.NTCDS0]" which will
chop off unneeded characters. The user can exit the
wait loop to return to the above menus by entering
a carriage return.

3. Terminal service with the TAX 11/780: The program will
display a set of instructions to the user concerninz
the operation of the program in this mode. The user
can input text after each V-prompt M7>) appearance.
To exit this mode, the user must enter a period (.)
followed by a carriage return immediately following
any V-prompt (V>). Upon exiting this mode, the
program returns to the bewinninR user menus.

4. Command VAX file transfers: This mode allows the
INTELLEC sys.em to command the VAX to either send or
receive files by sending it specially coded messages.
The procedure is as follows:
A. Downloading VAX files:

1. .he user must enter the message:
IVAX filename.VAXfiletype/TXT or .XE"

2. The specified VAX file will then be sent t^
the reouesting unit.

3. In the above message, TIT refers to text and
!X refers to machine code files.

4. After the file receipt is completed, the
puser can exit the wait loop by entering a
carraige return.

B. Uploaling VAX files:
1. The user must enter the message:"@VAX filename.VAX filetype/TXT or EXE'"
2. The above message opens a file by the above

filename and filetype on the VAX. The VAX
will reply: "Ready for sendfile FM.FT' and the

93

program will be in the receive wait looD.
3. The user must then enter a carriage return to

the beginninR of the program and then folliw
the normal file sending procedures as noted
above.

5. Disconnect from the network: Selection of this mode
causes the program to return control to the CP/M-8
operating system.

The other features of this program are as follows:

1. Error handling: The below listed transmission or
reception errors will cause the program to display
error messages and return to CP/M-80:
A. Receipt of a bad frame.
B. Receipt of a frame that has an improperly encoded

type field.
C. Acknowledge frame not received by the sending host

in a given time frame (Source timed out).
D. Receipt of a file larger than the disk space

remaining (Disk full).

2. Special instructions for IAPX 432 files that must be
transferred from the VAX to an INTELLEC system running
the Intel ISIS-II operating system:
A. These special fOles can only be transferred using

the VAX comma- mode. The VAX/VMS program
ETHERNET.EXE rst be invoked on the VAX in order
for this transfer to be successful.

3. The procedure is as follows:
1. After downloading the file to the INTELLEC

double tensity system using ETHERNET.COM and
CP/M-8e, the user must rename it from the
name assigned to it by the receive program to
it's original name.

2. The user must put the CP/M-80 disk in drive A
which must have stored on it both the renamed
file and the program TOISIS.COM.

3. The user mi'st then insert an ISIS-II disk into
drive B.

4. The user then, while logged on drive A, must
invoke TOISIS filename.filetype. This will
convert the program on disk A to the ISIS-II
format and store it on disk B.

5. The user must then remove the CP/M-8e disk in
drive A and replace it with the disk from
drive P.

6. The last step is to reboot the INTELLEC
system under the ISIS-II operating system
and proceed with the IAPI 432 procedures.

94

..

*LIST OF REFERENCES

1. Tanenbaum, A. S., CompLuter Networjt, Prentice Hall,
1981.

2. Saal, H., "Local Area Networks: An Update on Micro-
computers In the Office, 3te, May 1983.

3. Mason, J. and Shaw, G., "Implementing Ethernet from Soup
to Nuts, Local Area Network Handbook, ed. Davis, G.,
McGraw-Hill, 1982.

4. Ross, D. T., Goodenough, J. B., and Irvine, C. A.,"Software Engineering: Process, Principles and Goals,
I3_E1 aomueg, May 1975.

5. Myers, W., "Toward a Local Area Network Standard, "IEEE
Micro, August 198,.

6. Xerox Corporation, The Sthernet-A Local Area Network:
__ _ and_ Physic al Layer Sr pec_fications,
September 30, 1980.

7. Interlan Corporation, N13010 Multibus Communications
Contr~oller Use-rs Mar-ual, 1982.

E. Ong, M. M., Protocol Translation and Translators for
Hetegeneus C ompuqte. Networks, Doctoral Thesis,
University of California, 3erkeley, California, March
1992.

9. Netniyom, T. P,, Design and_ Ilementatio of 12ftware
_ in .XVM U!s R M 9 Ethernet Lcal Area Networ,

M. S. Thesis, Naval Postgraduate School, June 1983.

10. Livingston, W. D., "Local Area Network Improves Real
Time Intellizence Systems, ,Defense Electronlcs,
December 1982.

95

D-67 9 8 LAYERED COIMUNICTION
SYSTEM FOR ETHERNET(U)

NAVAL 2/2
POSTGRADUATE SCHOOL MONTEREY CA M D STOTZER SEP 83

UNCLA:FSSIFIED F/G 1712 NL

flEEHELI

%777

111111.0 M 12
iii" M 1 .8

11L25 -6

LA L

MIRCP RSLTO TS -HR
NA04L URAUo STNA- 1%

-.--.- . -7 7 -- .- - . - :M

BIBLIOGRAPHY

Digital Research, Link-80 Ceratrs quide, 1980.

Digital Research, PLLI-:8f p1i 2nj guide, 1980.

Digital Research, .LLI: e Languge Manual, 1980.

Hogan. T., Osbourne CP/M User Guide-Second Eliti2n,
Osbourne/McGraw-gill, 1982.

Intel Corporation, In _ Mcrocomuter Revelooment
Sr _n , 1976.

Leventhal, L. A., _0A-8085 Assemby Languaee Pro-
ram~mn, Osbourne/McGrav-Hill, 1979.

Miller, A. M., Mastering CPM, Sybex, 1983.

Zaks, R., The X114 o t P/M, Sybex, 1980.

5",.

A , , . . - . . . , .--. - - -. .-.-. - - - - -.. . - . .. - ,

" '-Si:., , ., , .. - , . . , - -. . : ,- - - .. .,..'v .:.,.- .. -

INITIAL DISTRIBUTION LIST

1. Defense Technical Irformation Center 2

Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2 .1
Naval Postgraluate School
Monterey, California 93943

3. Department-Chairman, Code 62 1

Department of Electrical EngineerinR
Naval Postgraduate School
Monterey, California 93943

4. Department Chairman, Code 52 1

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

5. Professor Uno R. Kodres, Code 521r 3
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

6. Professor Mitchell L. Cotton, Code 62Cn 1
Department of Electrical EngineerinR
Naval Postgraduate School
Monterey, California 93943

7. Professor Alex Gerba, Jr., Code 62Gz 1

Department of Electrical Engineering
4aval ?ostgraduate School
Monterey, California 93943

e. LtCol. Alan Ross, USA?, Code S2Rs 1
Department of Computer Science
Naval Posteraduate School
Monterey, California 93943

9. Capt. 3rad Mercer, USAF, Code 52Zi 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

97

* - - - - - - - - - - -,. a . - , ',- | a ' . a

le. Capt. Mark D. Stotzer, USMC
12802 Greenhall Drive
Woodbrilge, Virginia 22192

11. LtCol. J.F. Mullane, USMC, Code 0309
United States Marine Corps Representative
4aval Postgraduate School
Monterey, California 93943

12. First Lieutenant Thavip Netniyom, RTA
Chulachomkloc Royal Military Academy
P.ajadamnurn Avenue
Bangkok, Thailand

13. Capt. Ted F. Rogers, USN
Box 32?
Lumberport, West Virginia 26386

14. Captain Ioannis A. Karadimitropoulos
Delvinou 16
Papaaou
Athens, Hellas

15. Mr. Roger H. Stotzer
Langston Incorporated
111 Woodcrest Road
Cherry Hill, New Jersey 08034

16. Lieutenant loannis K. Kidoniefs, Hellenic 4avy
SMC 2303
Naval Postgraduate School
Monterey, California 93943

17. Major Anthony K. Sakellaropoulos, Hellenic Air Force
SMC 2243
Naval Postgraduate School
Monterey, California 93943

18. Mr. Mike Williams, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

19. Daniel 3reen (Code N20E)
Naval Surface Warfare Center
Dahbgren, Virginia 22449

98

20. Cdr. J. Donegan, USN
PMS 400E5
Naval Sea Systems Command
Washington, D. C. 20362

21. Mike McGowan
Z 585 198 Avenue
&loha, Oregon 97007

22. Dr. M. J. Gralia
Applied Physics Laboratory
Johns Hopkins Road
Laurel, Maryland 2070?

23. Dana Small
Code 8242
NOSC. San Diego, California 92152

99

* - ~ *. * . . a.. - . *. -- ~d .X

. ~ ~ -- .*.-

S*.*-,-..

I

